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Chapter One: Fundamental Concepts iad hilsaa

1.1 Vector Definition
The motion of dynamical systems is typically described in terms of two basic
quantities: Scalars and Vectors.

Lalsd) o) e s Y Sile G g RSl ipl) Ay A8 ja
A scalar 1s a physical quantity that has magnitude only.
It 1s completely specified by a single number, in appropriate units. Its value 1s

independent of any coordinates chosen to describe the motion of the system.

Examples of scalars include mass, density, volume, temperature, and energy.

Mathematically, scalars are treated as real numbers. They obey all the normal

algebraic rules of addition, subtraction, multiplication, division, and so on.
Scalar represented as

A, B, C... without upper notation or letter with brackets: |ff l, IE |, IE | e

nas Hlase Lel Al 408 oo Apaaall 4080)
Cllaa) ol e Al Lgiad 585, Aaliall Cilas gl caal 5 28 5 A JSE) Dpanell Sl Cay ot 2
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A Vector has both magnitude and direction.

Unlike a scalar, a vector requires a set of numbers for its complete specification.

The values of those numbers are coordinate system dependent.

Examples of vectors include displacement in space; other examples of vectors

include velocity, acceleration, and force.

Mathematically, vectors combine with each other according to the

parallelogram rule of addition.

Vector represented as A, B, C with upper notation.
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In equation form Vector given as: Ty S L
A = [AxlAylAZ] ___________________________

xw

Ay, Ay, Ay projections of fi along the coordinate axes x, y, Z.

1.2 Vector Algebra
e Equality of Vectors

Two vectors are equal if, and only if, their respective components are equal.
) OLisSs Gl Gagaiall 5 3 Ll aTS ja & gl 13 (leadall (g sl

If and only 1f
Ay = By, Ay = By, A, =B,
Or

[Ax:AyrAz] = [B,, ByrBz]

e Negative Vectors
J ¥l Aniall 8 5 plliall 48 jall allis (g 5l 48 48 s S oS (e s A ()55 dnie )
i==%
If and only 1f
A, =B, Ay, = —B), A, =-B,
Or [AxrAyrAz] = —|[B,, Byr B,]

e Vectors Addition and Subtraction
Opeadall 8 5 laliiall LS jall pas JOA (o 2a 55 45LS jo da dale 680 (el (g) pan
The addition of two vectors 1s defined by the equation
A+B = [Ax, Ay, Az] + [By, By, B, ]
A+B = [A,+By A, + B, , A, + B,]
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The subtraction of two vectors 1s defined by the equation
A—B=A+(-B) =[Ac—B.,A,—B,,A, — B,]

3 J

L L L b E T

e Multiplication by a Scalar
Gl haie e lalde) algh juh aa 4aie S5 Gl jlaiay 4aiall i dic

If ¢ 1s a scalar and A 1s a vector, .
EA=E A A ]
EA= [CAy, CA,; CA;] = CA - ”

v

e The Null Vector
The vector 0 = [0,0, 0] is called the null vector. The direction of the null

vector is undefined. A —A=0 =0 . A _ s X
0
o (6 gt A3LS jo mran (3l 4xiall o (g jaiall 4niall
e The Commutative Law of Addition Jalill o 5ilsl sy Cllgaiall aas
A+B=B+A (H.W) Prove that
e The Associative Law (352 il ) graatll 51l gty Clgniall pan

A+ (§+E) = (Z+§)+E (H.W) Prove that

e The Distributive Law & O sy Clgadial) pas
C(A+B)=CA+CB (H.W) Prove that
C 1s scalar.
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e Magnitude of a Vector

The magnitude of a vector A4, denoted by |j I or by 4,
1s defined as:

A= |A| = [A2 + A2 + AZ]V/2

- - -
>

Geometrically, the magnitude of a vector is its

ra A
length, that 1s, the length of the diagonal of the /L Ay 7/ /

rectangular parallelepiped whose sides are *

Ay Ay A,
i) g oA CSbaiinall (¢ ) sia ki Jsh ol ¢ alsh Jiag datall jlaia Gl ¢ dpuanigh Lalill e
asiall GLS jo oo
¢ Unit Coordinate Vectors o
A unit vector is a vector whose magnitude is unity. )i
There are three unit Coordinate vectors which also k
called basis vectors.
i =[1,0,0] ,j=1[0,10] , k=[0,0,1] ¢ 5 7
Any vector can be expressed in terms of these vectors: ‘
A=iA,+jA, + kA, x

saal 5 5aa 5o ylama (oAl Aniall sa Bas gl Ania
Example:
Find the sum and the magnitude of the sum of the two vectors A = (1,0,2) and
B =(0,1,1).

Solution:
A+B=(102)+(011)=(1+0, 0+1,2+1) =(1,1,3).
|A+B|=1+1+9Y2 =11
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1.3 Vector products
1.3.1 The Scalar Product

Given two vectors A and B, the scalar product or "dot" product, (/i. B), is the
scalar defined by the equation:

-

A-B=A,B,+A,B,+ A;B,

Laws of scalar product algebra

e A-B=B-A Commutation law
« A- (§ E o= A-B+A-C Distribution law
e (C CA )'B ([T -B) Multiplication by scaler

A.B equal to the length of the projection of (A) on (B) times the length (B).
(B) sk wypna B Ll A (e bied) Jsh g 4 - B

From analytical geometry the cosine of the angle between two lines given as:

AxBx+AyBy+AzBy AB
cos@ = = = 3

(A3+43+4%)2-(BZ+B5+BZ)? A8

-

-'-/I-BzABcose

Properties of the Scalar Product 0
1. A-A=|A? = A \A\ €0

-

2.A-B=0 =2A1B ie 6=090°

3. If (i, j, k) is an orthonormal basis then :

i‘i =j-j=k-k=1 (H.W) Prove that
i‘j=j-k=k-i=0

4.1f A = iA, + jA, + kA,
B = iB, + jB, + kB,
“ A

B = (iA, +jA, + kA,) - (iB, + jB, + kB,)
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-

A*B=iiAB, +i jAB, +i-kAB, + j-iA,B, +jjA,B, +
j'kAyBZ+k' iAsz+k'iAsz+k'kAsz
~A-B=AB,+A,B,+A,B,

Example:
Giventhetwovectors/f:2i+j—k,§=i—j+2k,ﬁnd/f-§
Solution:
A*B=A.B.+A,B,+A4,B,
A-B=2%1+1%(-1)+(-1%2)
A-B=2-1-2=-1

Some Application of Dot Product

1. Low of Cosines

If A.B and C are the sides of a triangular, then:

C=A+B

C-C=(A+B)-(A+B)
=A-A+B-A+A-B+B-B =
—A-A+2A-B+B-B
= |42| + 24.B +|B?|

~C2=A?+2A-B+
C?=A%*+ B? + 2ABcos#

2. Work
Suppose an object under the action of a constant force (ﬁ ) undergoes a linear

displacement (A.S:), as shown:
AW = F cos 8 AS

where 6: 1s the angle between F and AS
AW = F - AS
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Example:
If A=2i— § 2k and B = 4i—3k,ﬁndthemagm'tudeof/fandﬁandthe
angle between them.
Solution:
|A| = A= (42 + A2 + ADY? =[2%2 + (-1)> +2%]/2 =9 =3
|B] = B=(B2+B}+ BHY? =[4* +(-3)*]¥2=+25=5
AB=(2%4)+(-1%0)+(2x—3)=8+0-6=2

-

~A-B=ABcosf

-'.c059=£= -]
AB  3%5 15
6 ‘1(2) 82.3°
& 8 =€o0s — | = 82.
% "l15

Expressing any Vector as the Product of its Magnitude by a Unit Vector:
Projection Sl B gl Al i Ml g el K il g

A=A, +JA, + kA, z4 B
A

Multiply and divide on the right by the magnitude of A:

= .Ax .Ay Az)
--A—(lA+]A+kA A

The direction cosines of the vector A are:

A
cosa === =
A
cos ﬂ = ﬂ 5 . 5
A [~ Direction cosines
A,
CoOSy = —
5 =

where: a, 3, and y are the direction angles.
a 1s the angle between A and the x-axis
p 1s the angle between A and the y-axis

y 1s the angle between A and the z-axis
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+ A= A(icosa + jcos B+ kcosy) = A(cos a + cos B + cosy)

Or A=An

where 7 is a unit vector whose components are cos a, cos f3, and cosy
Consider any other vector B. Then, the projection of BonAis:

—

B -

1

BcosfO = =B-n

where 6 1s the angle between A and B.

Example:
IfA=2i— 3j + 4k is a vector, find the unit vector of A and the direction

cosines and direction angles.

Solution:
|A] = A= [2% +(=3)? +4%]'/2 = 29
2i-3j+4k _ 20 3j 4k

v VB i
3 4

s=ifs = )
V29 ' V29 'y29

S|

A‘—
A

Direction cosine

8l
O

V29
C05ﬂ=—-3— $B=COS_1(——3—)=12389° . . %
V29 V290 ¢ Direction cosines
7 (
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1.3.2 Vector Product (Cross Product)
If A - B two vectors, the vector product (ff X B) defined by: ‘E —AXB

i j k
AXB=|4 A, A,
B, By B B
0
AxB=il A A Ae gl A <
B, B, B, B, B, B, B
A
» AxB = i(A,B, — A;B,) + j(A;B, — A:B,) + k(AB, — A,B,)
or A x B = [(A,B, — A;B,), (A,B, — AB,),(AB, — A,B,)] \
IXi=jXj=kxk=0
tk
JXk=—-kXj=i , kXj=-i
kXiz—iXk:j ,i)(k:—j - .
ixj=—jxk=k , jxi=—k 0+ J

Proof

i Xj=(1,0,0) x(0,1,0)
=(0-10),(0-0),(1-0)
=(0,0,1)

~iXj=k

|4 x B| = |4] |B|sin®
or A x B = (|d| |B|sin6) -7

where (0 <0 < 180) is the angle between Aand B
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n is the unit vector normal to the plane containing the two vector Aand B.

Properties of the Vector Product
1.AxB=-BxA
2.Ax(B+C)=AxB+AxC
3.C(AxB) = (CA)xB=Ax(CB)
4. AXB=0 if (and only 1f) Aand B are parallel or one of them is zero.
5.AXA=0

Example:

Giventhetwovectorsff=2i+j—k,§=i—j+2k,ﬁndfi><§.

Solution:
|t J k i j k
AXB = |Ay Ay Al=12 1 =1
B, B, B, 1 -1 2
AXB=i(2-1)+j(-1-4)+k(-2-1)

AXB=i-5j—3k

Applications of the Vector Product

e Torque
Let (ﬁ ) be a force act at a point P(x, y, z) and (7) is a vector represented by:
OP =+ =ix+jy+kz
Then the moment (Torque) (N) about a given point (O) i1s defined as the
cross product of (F) and (¥)
N=7xF

10
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* The magnitude of the torque is 2 T‘F
|1V|=|F><ﬁ|=rFsin9 %
6 is the angle between 7 and F |
* For several forces applied on a single body at 2 .
different points, the moment add vectorially: e l ¥
%@ X E) = %N, \0\

* The condition for rotational equilibrium is that the vector sum of all the

moments 1S Zero. Jaua G g a5 il & sane 0550 ) sl o) V) Loyl
i X E) =XiN, =0

The Triple Product
1. The Triple Scalar Product

It is defined by: A- (E X C )

and 1ts value 1s a scalar.

Its properties are:
1.A-(BxC)=(AxB)-C
The dot and cross product may be interchanged in the triple scalar product
SN G pall s 8 ety ATV 5 ganall Gyl

2. A- (E X (::) = 0 if one of them 1s zero
3. If A=iA, +jA, + kA,

—

B = iB, + B, + kB,

C =iC, +jC, + kC,
A-(BxC)=|B: B, B,
Ce C C,

11
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2. The Triple Vector Product
It is defined by A- (E X C ) , 1ts value 1s a vector.

Its properties is:

ix(BxC)=(4-C)B—(A-B)C

The triple vector product 1s anti-commutative and not associative.

el 5 e 5 Jalite 58V Gleatall SN Gl
1.4 Derivation of Vector
If the vector (/f) is a function of a single scalar variable u then it components,
are also functions of (v). The vector may represent position, velocity, and so on.
axiall 1 (S a8 padall SN Alls 4 4K 50 (S 5SS lanie (gane padal Ally andall (S 13
Ay ) a8 sa

A(w) = A, (Wi + A, (Wj + A, (w)k

dA_ A [.dA, dA, dez]

du. domdn. Ml du +] du du
dA dA, .dA, _dA,

g +kdu

Properties

L. (A+B)="+2=A+B

dC =
2. du(CA) ——A +CE

3. du(A B)—— B+A-—

12
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1.5 The Position Vector of a Particle zZ4
The position of a particle can be specified by a

single vector, the displacement of the particle

=

relative to the origin of the coordinate system.
This vector 1s called the position vector of the

particle. Given as:

H.u_;.“ 3;[)\ 98 gaal gantiaddaid o ‘>=\.m.;h t.A)A 2aa0 S i
dais oy 4aiall 1a s cldlay) E‘M Jia¥l adaay ) dpuilly

&=l Jy

X

r=ix+jy+kz
where:
x=x(t), y=y@), z=2z()
The value of 7 is:
r=lrl=\x*+y?+2z2=S5
The magnitude of displacement 1s called distance

Alsall Loy g gall 4nie ia

1.6 The Velocity Vector
The derivative of 7 with respect to 7 is called velocity:
dc pull and (a3l Aailly auis pall 4nia 481

Gt _d gy d iy d
v=—=— (ix) +— (jy) + - (kz)

dt
5o dx LA cdy 4 g dz dk
V=G T ag Tl T TR Y25
di dj dk , _ _
o = , — = 0in Cartesian coordinate only
dt dt dt

. dx . dy dz
=1— —r k—
dt +] dt + dt

jj = +jy+kz Velocity vector
v = iv, + jv, + kv,

The magnitude of velocity is called Speed:
sv=v| = @2 +y? +25)1? GO ansy A ol 4nia e

13
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1.7 The Acceleration Vector

The time derivative of the velocity is called the acceleration:

. dv _d g Jinall panss (o 3l Aaaailly e ol daia diidia
a—dt—dt(lx Jjy Z)
dx  _ dy dz

at Tar T
a=1iX +jy +kZ  The acceleration vector

Example:
The position vector of a particle at time 7 is given by 7 = (2t% —5t)i +
(4t + 2)j + t3k , find velocity and acceleration vectors of the particle at time t.

Solution:
b= = (4t — 5)i + 4 + 3tk
= dv  d-r 5
a=E=—2_4l+6tk
1.8 Vector Integral
. dv
BT
jdﬁ = f adt
&= J BdE e 1)
. dr
T
fdf= fﬁdt
F == f VAt s (2)

14
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Example:
A particle moves along the x-axis at time 7 with acceleration given by:

a = 12t? — 6t + 6 , Find the velocity and displacement.

Solution:

— - fdv—jadt

6
v-j(thz 6t+6)dt—?t3—§t2+6t

a

4t3 — 3t? + 6t

&, (&= [sa
e — SN =
di ¥ = v
6

3
= | (4¢3 — 3t? + 6t)dt =— t4——t3 t2
P f( 6L =g t" — ot 45

v

I~

r=t*—t>+3t?

1.9 Tangential and Normal Components of Acceleration

When a particle moves along a curved path, it is sometimes convenient to

describe its motion using coordinates other than Cartesian. When the path of

motion is known, normal (n) and tangential (T) coordinates are often used.

6 AT i) Aty 4% ja Ciuay Cauliall (e (35S0 ¢ inte jlie Jsh o aueal) 8 e Lavie

S 5 (1) @asead) sy aadie) S ¢ b yme A8 el jles 550 Lavie A3 Sl e
(‘[) g.?_uhm.\\

V=T

where 7 1s unit tangent vector

. dv dvt

8 ==

. dv dt

a= ET 5 UE

dt

Pk n

For small 1 Veloety veelars
At =AY = 0

15
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16

AT 1l T

&
Ay

A'rl
At

At 5
— =N Unit normal vector

Ay

Using chain rule
dt _drdy dy
dt _dyp dt dt

dt _ dpds dids
dE Tatas  “ds dt

drt v
— n_
dt p
where 17=E y -2

dat P ds
p 1s radius of curvature

. dv  v?
a=——T+—n
dt p
= . 172 * »
a=vT+—mn Equation of acceleration Jimatll 4slna
p

-+
la| = (1'72 -+ Z—z)l/ L Magnitude of total acceleration G J==3) )i
a.=1v=3=5 Tangential acceleration laall Jianl

a, =— Centripetal acceleration S pall (aall 5 58 o



Chapter One: Fundamental Concepts il dlilSia

Special Cases of Motion
e When the particle moves along a straight line.

2
p—oo0 = an=%=0 = a=a, ="V

The tangential component represents the time rate of change in the
magnitude of the velocity.

ol el Jaeal) Jid Jiaaill Zleal) € pall 8 aifiiee had o awal) 3 a0 2ic

e When the particle moves along a curve at constant speed.

X v?
a,l_:vzo ﬁa:a[n:?

The normal component represents the time rate of change in the direction
of the velocity. (Centripetal acceleration)

el Janadl Jid Juaaill G5 ganll LS 5l (i 335 de ju iaie Lo awall A 5a aic

* When the particle moves along a curve at non constant speed

» At the increasing speed with certain rate v, the acceleration is away
from the center.
dc yull Jana 8 83l s GilS s A48 e Ac pu Jade e awall A€ a2
e ¥ alaiY) a3 all e Tams 650 Jisadl) lanic
» At the decreasing speed with certain rate v, the acceleration 1s in the
opposite direction.
Lsie dc jull Jare 8 allis dlia CuilS Gla 430 je e pw Jade Je auall &S 2ic
Sl olaiWL (81 38 5all (e ey (5580 Lyl Jaanatl

Normal at P Normal at P

(a) Constant speed (b) Increasing speed (¢) Decreasing speed

17
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Path of car

a
A

ar

1.10 Velocity and Acceleration in Plan Polar Coordinates

It 1s often convenient to employ polar coordinates r, 0 to express the position of

a particle moving in a plane. Vectorally, the position of the particle can be

written as the product of the radial distance r by a unit radial vector i,

A Sy ¢ S all Aalill e g shall 3 paiall sl

Astia (4 p Ayl ledd) gl Jalad g3 il pan ya
& hall 32 I

r=ri, e veeeee (1)

YA

P X

As the particle moves, both r and i, vary

_dr d . dry | di,
=g =g =(g) b+ (3)

o di,

v="i,+71 (E) il B s sl

To obtain the polar formula for the velocity of P, we differentiate eqn. (1) with
respect to (t).

Hence by the chain rule:

di, 0i, 06

18
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Any vector Ain the plan (i, j) can be expanded in the form:
A=Ai+Aj

where A, , A, are the component of A in the (i) and ( j) direction respectively.

We will now evaluate the two derivatives Z—g ; % , we expand i, ,j, 1nterms
of Cartesian basis vectors (i, j) this gives
i,=cosfBi+sinfj ...oieueeoea(4)
Jg = — 518 T+€080 J v anns ssmn (D)
Iy _ . , .
e sinf i +cos@ j
i
é =S P ()
Yo — _[cosB i— sinf jl
a0
a .
o T TR
diy
“L=jgX0=0j o (8)
v = (rg) J5 cceisvmensna(9) Velocity in polar coordinate

The velocity of P is the vector sum of an outward radial velocity (7) and a

transverse velocity (16)

To obtain the acceleration we differential V with respect to t:

a=2=2Gi,) + = [(r6)jo]

dt
= i, +7 5T+ (r9 +18)jg + (rf) L2
= i, +7 ((2 D) + (76 + rb)jo + (6) (L2 x 2)
= #i, + (70)jo + (70 +16)jo + (r0) (—i,6)
= #i, + (10)jo + (76)jo + (rB)jo — (16?)i,

wa=(#—r8?i, + (r +2r0)jg ............(10) Acceleration in polar
coordinate
a, = (r — réz) The magnitude of the radial component of
the acceleration
ag = r6 + 270 = -— (rze) The magnitude of the transverse component of

the acceleration

19
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If a particle moves on a circle of constant radius b,
a,=bl?, ay=0ho
If the particle moves along a fixed radial line

a.=1t, ag=0

Example:
A particle moves on a spiral path such that the position in polar coordinate 1s
given by r = bt?, 8 = ct , where ¢ and d are constants , find the velocity and

acceleration as a function of time.

Solution:
v=7i,+ (10) ], r=ht? , 7=2bt, ¥=2b
; ; d
= i 5 (06) +jo(bt?) 5 (ct)
= i, (2bt?) + jo (bt*c)
a=(#—-r0%)i,+ (r + 218)j 8 =¢ef ;0=0c;8="0

= (2b — bt?c?)i, + (bt?(0) + 2(2bt)c)j,
= (2b — bt?c?)i, + (4btc)j,

Example:

A particle is sliding along a radial groove in a rotating turn able has polar
coordinate at time t 1s given by r = ct , @ = gt , where ¢ and g are constants ,
find the velocity and acceleration vectors of the particle at time t and the speed
of the particle at time ¢ .

Deduce that for t > 0 the angle between velocity and acceleration vectors 1s

always acute
Solution:
v =iy + (r0) jo F=c #=0, fO=g, 6=0
~v=cl. + (ct)g jo
c(iy + gt jo)
a=(#—1r6%)i,+ (r6 + 20)j,

v

20
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a= (0—(ct)tg?)i, + (0 + 2c9)jo
a= —cg*ti, + 2cgjo = cg(—gti, + 2jg)
speed |v| = [c? + c?g?t?]Y? = [c(1% + g*t?)]|Y/? = c(1 + g?t?)1/?

To find the angle between v and a
v.a = —c?g?’t+ 2c?g?t = c? g(—gt + 2gt) = c?g*t

“v.a>0fort>0

Hence for t > 0, the angle between v and a is acute

21
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2.1 Newton's Laws of Motion
Newton's Laws of Motion are as follows:
1. Everybody continues 1in its state of rest or of uniform motion in a straight
line, unless it 1s compelled by a force to change that state.
2. The change of motion is proportional to the applied force and takes place in
the direction of the force.
3.To every action, there 1s always an equal and opposite reaction or the

mutual actions of two bodies are always equal and oppositely directed.
fed A8 jall i il B

el gale j5 Al ¢ afiue i e Zabiial 4 all § Sl e aills e ey awe S 1
Al el

_Ejﬂ\)y\uau’hu)gjw\zﬂ‘exsﬁ")..ja_.!'k_lut_ﬁ._j_z
U)SJMUJUAA.“ JLIAY\ D\A:‘Yl—\ L)ASLI.AJJ‘.\EA“JU ‘,Lum&ﬁ Q) Laaly Slla U)Sr-‘ 4&3&&‘ 3
ol;]&l_l 4llaa @JL&L Ladla

2.2 Newton's First Law: Inertial Reference Systems
The first law describes a common property of matter, namely, inertia.

Inertia 1s the resistance of all matter to having its motion changed
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2.3 Mass and Force: Newton's Second and Third Law
Consider two masses m,and m, attached by a spring and they initially were at

rest. If the two masses were pushed together, compressing the spring and then

releasing them, so that they fly apart attaining speeds v, and v, respectively.
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The ratio of the two masses:

my

V1
2

my
Eqn. (1) 1s equivalent to:

A(mlﬁl) = _A(mzf}z) ...... (2)
because the initial velocities of each mass are zero and the final velocities 14

and v, are in opposite directions. If we divide by At and take limits as At — 0

obtain:

= (myy) = — = (My5y) e (3)
The product of mass and velocity, mv, is called linear momentum.
So the second law can be rephrased as follows: The fime rate of change of an
object's linear momentum is proportional to the impressed force, F. Thus, the
second law can be written as:
el a3l de ) Al O s sl e sl
sl il Jaedl) (64 5l s A il o ASpall AN o 6 Aelua sale) (S Sl
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F o< (m)
dt
= d .
B = kE (mv)
where k is a constant of proportionality. Let k = 1
S @ o
wFe=— (mv)

where m constant, finally express Newton's second law in the familiar form:

=N

dv -
F=m—=ma e (4)

F: is the net force acting upon the mass m; that is, it is the vector sum of all of
the individual forces acting upon m.
From Eqn. (3)

ﬁl R T R— (5) Newton's third law

Two interacting bodies exert equal and opposite force upon one another.
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2.4 Linear Momentum
P=mv ... (1)
=2 2)

Sub Eqn. (2) in third Newton’s law 13:1 = —ﬁz

dP, _ dP,

dt dt

dﬁl disz d = =
—+—=0 or —\P,+P,)=0
dt * dt dt( 1t 2)

1—51 +Fz = constant (conservation of linear momentum)

~ Newton's third law implies that the total momentum of two mutually

interacting bodies is a constant.
The equation of motion for a particle subject to the influence of a net force, F,
writing as the vector sum of all the forces acting on the particle.
- = dZ.,’.‘ g
F=YE=m-—=ma

dt?
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Example:
A spaceship of mass M is traveling in deep space with imitial velocity

(v; = 20 km/s) relative to the sun. It ejects a rear stage of mass (0.2 M) with
speed (u = 5 km/s), find the final velocity Vs of the space ship after ejection.

Solution:
The system of spaceship plus rear stage is a closed system upon which no

external forces act; the total linear momentum is conserved.
e Gl Bl U e alal Al pal) M dilal oLl R S

AP =P —P,=0
o Lgiae S laall a3 3l S adle ¢ An A o 8
-'-Pf=P,- ...... (1) i ﬁf
— —_—

P; = initial linear momentum e
1
€ __ >

13[ = final linear momentum
Let U be the velocity of the rear stage after ejection. =
p. = M¥; ......(2)
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The total momentum of the system after ejection 1s then:

Pr =0.2M U + 0.8 My ......(3) Juaii¥l 2my il IS ol o2 3
u=v,—U
U=¥—2% e (4)
Sub. Eqn. (4) in Eqn. (3)
Pr = 02M(v; — @) + 08 My ... (5)

Eqn. (5) equal Eqn.(2), so:
[0.2M(v; —u) + 08 MV =My, | + M

= 20km/s + 0.2(5 km/s)
2.5 Rectilinear Motion

When a moving particle remains on a single straight line, the motion is said to
be “rectilinear . The general equation motion is:

- . . & 3 &) caal g adiiea Jad 4K 3 aweadl yaiun Ladie
F(x,x,t) =mX=ma - B il }@?:;JN i
4aitiua" 48 _);_“
Note: We usually use the single variable x to represent the position of a particle.
To avoid unnecessary use of subscripts, we often use the symbols

v,a,x, X and F respectively, rather than v, a,,x,, X, and E,.

Special Cases:

1. Constant Force

F = constant then a = constant

= dv dv F -

~“F=m——>—=—=a=constant ...... (1)
dt dt m

mx = ma

= i dv -

F =XxX=——=q
dt

dv = adt
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[y dv=[jadt

v—y,; =at v, = Initial velocity

[y dx= [, (at + vy) dt

1
X — X, =Eat2 + vyt

x=%at2+v0t+xo ...... (3)
at = v — v
e i (4)

v—v2\ 2
2a (x — x,) =a2( - ) + 2v,(v — 1)
2a (x — x) = v? + v¢ — 2vv, + 2vvy, — 2V}
2a (x —xy) = v% —v¢ W )

The equations of uniformly accelerated motion

v = at + v,

X =3z at? + vyt + x,

2a (x —xy) = v% —v§

2. Free Fall
In the case of a body falling freely near the surface of the Earth, neglecting

air resistance, the acceleration is very nearly constant
m

a=g=98 — =32 ft /sec? zha e QAL e auad jadl b il Alls 3
5 e Bl a5 5<0 ce) sl 4 glia Jlan) 5 ¢m Y

F =mg
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Example:

A block 1s sliding down on a smooth plane inclined at angle @ to horizontal. If
the height of the plane is h as shown in the figure and the block 1s released from
rest (vy = 0) at the top, what will be its speed when it reaches the bottom?

Then how the accelerate will become when surface 1s not smooth?
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Solution:
a)Smooth plane (No Frictional force)

|l
<

F =ma
~ F
==
m

ﬁ=mgsm9
ma = mg sin#é
2l = @SInG vones (1)
X—ikg = I (2)

Using one of the equation of motion (2a (x — x,) = (v? — v{))
where vy, =0
2% = 20l = Xg) seeses (3)
R i - N
= atgsno ()
~ vt =2gh

v =Jg20H e (4)

b) Rough Plane (Frictional force)
F=mgsinf —f ... (5)

\\*
mgsinf

3 . v"l )
fa N mgcoso

f=uN
N: normal force, u: coefficient of sliding or kinetic friction
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From figure:

F = ma = mgsinf — umg cos 6
a

= g (sinf — pcos )

For motion up the plane, the direction of the frictional force is reversed; that 1s,
it 1s 1n the positive x direction. The acceleration (actually deceleration) 1s then:

a = g(sinf + pcosB)

Us &l ,3) £ bl can pall olat¥) 3 (S5 (o AISEY) 5 8 olad) (e oy bl o) 385l
(3bl s

2.6 Forces that Depend on Position
35S 23U 5 Syl A3 o g

(The Concepts of Kinetic and Potential Energy)

c . Lsa Clavwall > 215 ed @
e Force depends only on the particles position Slapuall g go o 2aiad3 3

. - Zasilalls ) idl) o
¢ Electrostatic and gravitational forces. Antlall s A8l 5 oSl (6 53l

e Forces of elastic tension or compression. Al ) Gl Sl oo

If the force 1s independent of velocity or time, then the differential equation for
rectilinear motion is simply:

Flx) =m¥ e (1)
Using the chain rule

sttt S0
dt dt dx dt dx
dv
X = va ...... (2)
Sub. Eqn. (2) in Eqn. (1)
AF(x) =mve . (3)

dx
Also, Eqn.(3) may be written as:

F) =2 42

dx
F)=2 ... (4)
where [T = -;: mv2] — Kinetic energy of the particle
F(x)dx = dT
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[} Fe)dx = [ dT =T, =Ty =W ......(5)

The work 1s equal to the change in the kinetic energy of the particle.

Let us define a function V(x) such that vl L8 jall A8l & el (g5l Jasl
av
F(JC) = — E
f;o F(x)dx = =V + constant ... (6)

V: Potential energy.
The function V(x) is called the potential energy in terms of (x), the work
integral 1s

W=fx’:)f(x)dx= — fx’;dv=—v(x)+v(x0) =T—T,

—V 4+ costant =T
T +V = costant

-;- mv? +V(x) =costant =E ....(7) Total energy equation

Total energy (total mechanical energy) it is equal to the sum of the kinetic and
potential energies and is constant throughout the motion of the particle.

Such force (depend on position only) called Conservative force.
Nonconservative forces that is, those for which no potential energy function
exists are usually of a dissipational nature, such as friction.

(Free Fall) (Constant acceleration) is an example of conservative motion.

oy Adlain¥ly A8 all Bl § sena (6 sluy AN es)

1 ; - >
Emv2+V(x)=E (s gz pal) o aaind) 5580l 038 () ppuand) 48 ja Jlsh o
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SV =E—=V () *— o5 el o8 ¢ Al G @l L aa g Y ) ol

o (Gl Ja) Jall i) () s b ASEAYT e ol
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vi = lE—-V(x)] Akl JIES pall L e

cv=+ %[E —V(x)] ... (8) Equation of velocity as a function of (x)
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s + dx

t=) —m———— ...... (9) Equation of time (f) as a function of (x)
ko [2E-v o)

Note that:
1. When V(x) < E — The velocity (v) is real
2.WhenV (x) = E - The velocity (v) =0
This means that the particle must come to rest and reverse its motion at
points for which the equality holds. These points are called the turning
points of the motion.

3.When V(x) = E — The velocity (v) is imaginary

el QN ZaN 2y e 50 BV V(X)) S Al 2 diia (1) 4o pull 0S5 @
O Gang prall o Jim 13s 5 LIKN Z8UAN 2y 5lie V(x) 058 Als 3 aall &) jlue de jull 555 o
A8 jall f g 1 Il (e bl o3a g aniiy g 31 busall Jand ol i 43S pa (g 5 i
caall KN ASULI 2 s V() S Als 8 Al A b e ) ()5S0 @
Example: (Free Fall)
A body is projected upward in the positive x-direction with initial speed (v).
choosing x = 0 as 1nitial point of projection , find the maximum height attained

by the body and then find the equation of time (t) in terms of (g)

Solution:
Choose the x direction to be positive upward, and then the gravitational force is
equal to (—mg). Atx = 0 i = v,
= —mg ... ... (1) Atx = max X =?
B = dv(x)
dx

v [Fx)dx=-V+c ... (2)
Sub Eqn. (1) in Eqn. (2)

-'.f—mgdx=—V+C choose c = 0

—-—mgx=—-V+c thenV =0 at x =0

» =g ... ... (3) Potential energy

Sub Eqn. (3) in Eqn. (4)

9
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B = %mv2 +mgx ... (5)

The body be projected upward with initial speed v from the origin x = 0
E = %mvg + mg(0)
sE=s mrl s (6)

Energy equation during body motion

"= mug = jzl-mv2 +mgx ... (7)

2

v2=v—-2gx  .....(8)

The turning point of the motion, which 1s in this case the maximum height
(X = Xpnax) » 1 given by setting v = 0.

gl ) adl vic Allall oda 8 0S5 AS pall 3 g sa Il A
0= Ug _ ngmax

1
g T Ug = mgXmax

2
S Xmax = -;% —The maximum height that the body attained

To obtain time (t) from Eqn. (8)

v*=vi—2gx

= (E)Z =vé —2gx

dt
dxz 2
2 =Vy — ng
dx?
2 5
dt ==
0~<9x

dt? = (v¢ — 2gx)~tdx?
dt = (v — 2gx)~12dx

By integration two side:
t =
J, dt = fo"(vg —29x)~12 dx

X

o AWi-2g0M2 T (w2902 | v
29 0 g g
p=Yo_ (v5-2gx)*/2
9 9

10
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2.7 Variation of Gravity with Height

We assumed that g was constant. Actually, the force of gravity between two
particles is inversely proportional to the square of the distance between them
(Newton's law of gravity). The gravitational force that the Earth exerts on a

body of mass m 1s given by: Ot O Al 58 o) (@l ) el g of Lyl
P;. = —G? ....... (1) (ub#]

Where G: 1s Newton's constant of gravitation
M: 1s the mass of the Earth
r: 1s the distance from the center of the Earth to the body.

We know that there is a relation between the force and potential energy:

F=—3—‘r’—>av=—Far s dV = ~Fdr ~>F
fav=—[-"Trdr

V() = GMm ()

V(ir)=— GMTm ......... (2) Potential Energy function

If we neglect air resistance, the differential equation of motion is:

55 Mm 2 e P .

mi =—G— ... (3) e 6]l Lo slia Jlaal Alla 3
ar dr
=i— * —
dt dr

T dtdr  drdt

. L dr
sF=r— (4)
Sub. Eqn. (4) in Eqn.(3)
L ar Mm
mr—=—G—-
dr r2

Integrating both side with respect 7 and r
. 3 dr
m [7di = —GMm [ =
m [7di = —GMm [r~2 dr

11
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1 8 GMm _ —
Emr2 = ey 241 = GMmr—t + ¢
1 . GMm

“mr? = +c

2 r

¢ = E 1s constant of integration.

%mﬁz =3 Gf""‘: . [— (6) Free Falling Energy equation

r

Eqn. (6) is energy equation, represent the sum of the kinetic energy (1% term)

and the potential energy (2™ term) remain constant throughout the motion of a

falling body. (J5Y) 2all) A€l 8Ll g gans Jiaiy cdBlll Ailae Jiai (6) 8 Alalaall

) el 38 sk A3 5 0 g () 2l ALK ZGL)
When the projectile shot upward from the surface of the earth with initial
speed v;:

e

Where 7, 1s the radius of the earth

Now, in order to find the speed of the projectile at any height x above the
earth’s surface, combining the last two energy equations (6) and (7):

(7) 5(6)38Uall (45 32 cpilalaall pand (N1 phass (358 x §L5 ) (o 3 Aadall Ao jus Al (V)

1 ., GMm 1 2 GMm

“mié —— = -mv§ ———

2 r 2 Te

1 1 . GMm  GMm >T =1 +x
-mvi —-mri? + - =0 ’

2 2 r Te

1 . 1 1

sm(vg — 1) + GMm(- — =)=0

Substituting by (v = 7°), then multiply the Eqn. by (,%), we get:
(v¢ —v?)+ ZGM(%—l) =0

Te
v? =} +26M (> -21)

Te

Butr=r17,+x

12
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.- -

4L 1

= —) woer. (8) Speed at any height above the earth surface
TetX Te

s = +26M(

Now the equation of gravity acceleration for the projectile on the earth’s surface

1s given: (gravitational force equal to weight of body)

M —ing gl o Gl Dol it Ulan o) o O
¢ (pendl 315 gsbasi Al 3 58) 15 Y
- 9)
Te
gré
G=%F (10)
Sub. Eqn. (10) in Eqn. (8)
2
v? =yl 4 I ( - —l)
M Tet+X Te

2 — w5l 2 (Te=(retX)
v =15 +297% (re(re+x))

v? = v§ + 2grf (—re_ re_x)

Te(Te+x)

=i 20 (5)
2

e
=i - 200(22)

v’ =v¢ — 2gx [—(;}&7] = vf — 2gx [—1,(-]

e Te Te

e = v§ — 2gx% (1 3= :—e)—l.....(l 1) Speed of projectile with variant gravity acceleration

When x < re — (-:—C-) can be neglected, then Eqn. (11) reduces to the form:
e
v?: =t —2gx ...... (12) Speed of projectile with uniform gravitational field

The maximum height (turning point) is found by setting v = 0 and solving for x

20 =1 = 20%p 0 (1 + 7457

vg = ngmax(l * i%fl)—l

13
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2
_ Y Xmax
Xmax = Z (1 + Te )

2 2
— Yo 4 Yo *¥max

Xmax = 29 29 Te
X — Yo Xmax _ Yo

Max 29 re  2g

Uz Uz
xmax(l - Zg(:“e) - 'Z(;'
v w2 \7! ; 5 -
Xmax = i (1 = Zg(:'e) .....(13)  Maximum height of the projectile
2
Again, if v§ < 2gr, — zv"r can be neglected
e
2

Xax = 0 = :—3 vvveee(14) Maximum height of the projectile with low initial speed

To find v, that make the projectile escape from the earth’s gravity, which is
called escape speed, we need to expand the series in Eqn. (13), by using

binonual, as in:

o)zl el de pu et Ay oY) Ldla e e CaplEal anall Jaad A vy Sy
gl daeis alasiudy «(13) alolas 2 Adulidall &l Saa Al

w14 (B 2_,,,)
(1 2gre) o (1 2gre + (Zgre)

Sub. in Eqn. (13)

v2 ( v2 vz 2
X — h — 0 1 f— 0 + ( 0 ) R
s 29 2gre  \2gre
2 2y 2 243
s __ Yy vH 1 vo 1
xmax_h__._(_) _+(_..) — 4 e

29 \2g9/ re \2g9/ 1}
Neglecting high terms
2
Yo
Xmax = h = 5
vé = 2gh

Vo =+/2gh

h=Xpex =7 =6.4X10°n and g = 9.8m/s?

WV, =429 7, =11km/s ...... (15) Escape velocity

14
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In the Earth's atmosphere, the average speed of air molecules (O, and N,) 1s
about 0.5 km/s, which i1s considerably less than the escape speed, so the Earth
retains its atmosphere. The moon, has no atmosphere; because the escape speed
at the moon's surface, owing to the moon's small mass, is considerably smaller
than that at the Earth's surface, any oxygen or nitrogen would eventually

disappear.

4548/ K05 Jsa (Ny 5 0;) olsed) Sliim de s Janssia gl ¢ i M (g 5all il
aie g el Ao su oY s Al Gal adll s s V) Bdiad SN (g gel) Ao g (e G B
L,Q‘U}A‘UAJY\C‘E“M“—U)&“&Q)“LJ‘J;‘SJ)"‘A\ ‘SM‘)AEX‘&SM“)AS]‘CJQM
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2.8 The Force as a Function of Velocity Only
(Horizontal Motion with Liner Resistance)
It often happens that the force that acts on a body is a function of the velocity of
the body. This 1s true, for example, in the case of viscous resistance exerted on a
body moving through a fluid. If the force can be expressed as a function of v
only, the differential equation of motion may be written in either of the two
forms
b el Jas e cmanaa s aweal) Aoyl Al s anal) e 555l 5580 of Gy Le Llle
Ao ull S 3l e el ST 1Y) alle e Ol awsl) e i ) sl da gl Als
Cfisiin 5 38 jall ALolil) Al ) UK (Sah ¢ Lo
Fo+F()=m=......(1)
F, = is constant force that dose not depend on v
mdv = F(v)dt

mdv
dt = )

By integrating both sides:

mdv
dt = [ —

=t->t).... (2)

Assuming that we can solve the above Eqn. for (v)

(v) = v(t)
Second integration: [ v(t)dt = x(t)

15
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W _dvax . av
dt  dxdt  dx
Sub. 1n Eqn. (1)

dv
F,+F(v) = mv—

mv dv
dx = F(v)
x=J ";v(:)v =2(¥) e (3) Position as function of (v)

Example: (Horizontal Motion with Liner Resistance)

A block is projected with initial velocity (vy) on a smooth horizontal plane, but

it was affected by air resistance proportional of (v) i.e. F(v) = —cv. Find the

equation of time (t) as a function of (v), then find the equation of velocity and

displacement as a function of (7).

Solution:

16

By integrating both sides
[fdt=—Z2["2
0 c Vo v
=

m
t=—— nv]y, = - (Inv —Inv,)

t=—=In (1) ceveern(3) Equation of time as a function of (V)

c Vo

Multiplying by (=)

v=ysem ...... 4) Velocity as a function of ()
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= 8%
Tt
dx -
.E— vo em
x x —Ct
Jy dx = [j vo em dt......(5)

mvg (t—c —Ct
xX=— — emdt
c fO m
mv, ¢t
X =— em ]
c 0
=c't —c(0)
x=—220 oo + s e m
c
muvg =et i ;
x == l—em ) ....... (6) Displacement as a function of (t)

Example:
If F = —cv find the velocity and time equations as a function of displacement

for a particle with initial velocity v, .

Solution:
d
F=—cv and F=mv—
dx
dv
—CV =mv—
dx
C X v
——J, dx = fvo dv
——x=v—v
m o 0
vV=vy— ix O, (7 Velocity as a function of (x)
[The speed of the body varies linearly with the displacement (distance)]
o s a1V go b At ausll de
dt v c
d v=Vyg——X
=Yy ——X ¢
dt m sdv=——dx
. - m
t _(x dx “m av _ .
fO dt - fo vo_ix ¥ _£ v ey

m m

v m

2= [ vy — (£)]
m

17



Chapter Two: Rectilinear Motion of a Particle il dlilSia

;o fx —%dx
0 o)

t=""|mn(v, - )(;) x) = Invg|

_—x] (time as a function of (x))

Yo

2.9 The Force as a Function of Time Only

— 552
F(t)—mdt

dv =Y g¢
m

By integrating

dx = v(t)dt
[dx=[v(t)dt ......(2)
Sub Eqn. (1) in (2)
x=f[f%)dt] dt ... ... (3)

Example:
A block 1s 1nitially at rest on a smooth horizontal surface. At time (¢t =0) a

constant increasing horizontal force is applied F = ct. Find the velocity and

displacement as a function of time.

Solution:
dv

F=ct=md—t

dv = ~ct dt
m

i ot
v==— [ ctdt

ct?

2m

18
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dx
V=—
dt
dx _ ct?
dt o 2m
ct?
dx = —dt
2m
t ct?
x = | —dt
0 2m
__ &t
6m

2.10 Vertical Motion in a Resisting Medium Terminal Velocity
Linear Resistance

An object falling vertically through the air or through any fluid is subject to
viscous resistance. If the resistance is proportional to the first power of (v), we
can express this force as (—cv) regardless of the sign of (v) because the
resistance 1s always opposite to the direction of motion. The constant of
proportionality ¢ depends on the size and shape of the object and the viscosity
of the fluid.

i Ao glaall CollS 13) A 5 M) Aa glaal aila (o DA (e sl 21 s e Ll ) Jaiay () ansall (o0 5ah
L o SRl ks (—B) S 85l el e el Ui (Gulad D 20AN) (1) d 10915580
Ao s )y el JS35 ana o aaiey ¢ Canliill Gl 48 jall oladY duSlae Wil ¢ 4S5 4 i) oY (1)

RN
Let us take the x axis to be positive upward. The differential equation of

motion 1s then

—mg —cv = m% ...... (1) Linear Equation
t v  mdv

fo b= fVo -mg—cv

t _ v dv _ _fv dv

m Vo —mg-cv Vo (mg+cv)

t v dv

; - Vo mg+cv

' 1

~= —C—lln(mg +ev)] ¥,

L = _Ci[ln(m'g + cv) — In(mg + v,)]
1

m

19
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wt=—"In (mgHv ) ...... (2)  Eguation of Time

c mg+cvgp

Eqn. (2) represents time in term of velocity; by solve Eqn. (2)

< mg+cv

em =

mg+cvg
et
mg + cv = (mg + cvy)e™m

—ct —ct

cv=—-mg+mgem +cypem | +c
mg mg —ct =)
SVvV=——""+9F——em tyyem
c c
=gk
P = — % + (ng_ + Vo) em ... (3) TVelocity as function of time

Eqn. (3) represents velocity in term of time.

—=ct

When (t > %) thenem = 0 so, the exponential term can be neglected

s = _ECQ ...... (4) Terminal velocity

Terminal velocity: 1t is that velocity at which the force resistance 1s just equal
and opposite to the weight of the body so that the total force on the body 1s zero
and so the acceleration 1s zero.

Cusy anall ()5l Aulas 5 Lalad 4y 5lua 55l 4 5lie Lga (5 <5 Al Ae judl 5 a5 gTiall Ae ju
o (S isadll s 6L jeiall (g gl anall e 200N 5 gl 585

m . S

—:-7- =1 Terminal speed csetiall dc
m o e » F - 8

T=— Characteristic time S sl e )l

Then Eqn. (3) becomes:
v=—v+ W +vp)e T ... (4) Velocity in term of terminal velocity

These two terms represent two velocities; the terminal velocity v, which
exponentially (fades in) and the initial velocity v, which exponentially (fades

out) due to the action of the viscous drag force.

L 235 L3 g At e )y Ll o205 ) v, giidd) Ao ju ey Dliay (haadl ol
A e g8 00
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We can find displacement by integrate Eqn. (3)

—ct

.'.d—x-:—m"l"( +v0)e7n

dt c
—Ct
[y dx=—= f dt+m‘qf e dt+f v em dt
_ mg mg (-c /m\ pt =<t vo(—c /m)
x—xo———c—t+7(7)f emdt +——— e fin ) f em dt
. _ Mg _mg t—_ _vom c —
& —Fp=—r g = e dtf - it
—ctqt —ctqt
X —x,= mgt_ng[ —| _zom oo
C C 0 C 0
2 —ct —ct
2 ct —C
x—xo——w-t mg(em —1)—M(e7—1)
c c2 &

2 —ct —ct
x—x0=—wt+u(1—eﬁ)+v°—(1—677)
c 2 e
=6&
x—x0=——-—t+(mg mv“) (l—em) ....... (5) Displacement Equation

Also, write 1n the form
—ct
x=x—vt+X (1—em) ... (6)
2
where X; = nd +mv° grt +v,t

C2

In particular, for an object dropped from rest vy =0,
From Eqn. (4)
v=—v+ (v, +vy)e " = v, + v, e /T
e When (t =1)
v=(1-e"")y,
v=>0—-eYy,
sWhen(t=1) »v=>0-e1)vt
e Whent =27
v=_(1-e2"")y,

v=_(1-e"?)y

21
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~when(t=21)>v=_>0—-e?)y,

Thus, after one characteristic time the speed is (1 —e™') times the terminal
speed, after two characteristic times it is the factor (1 — e~2) of and so on.
After an interval of the speed 1s within 1% of the terminal value, namely,
(1—e v, = 0.99995 v,

e yu Cilazl (1 —e71) dejudl 585 caaly Losi Ga) 28 (Sl e pua s 13 L,

preall Aoy Joaidnia )5 58 22y 18 (1 — @72) dlie ju (S5 Lo sl a3l (piaaia day g ¢ gl
(1—e™>)v, = 0.99995 v, &l ¢ afiall de s o a7 1 3508 &
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3.1 Introduction

Everywhere around us we see systems engaged in a periodic motion: the small
oscillations of a pendulum clock, a child playing on a swing, the rise and fall of
the tides, the swaying of a tree in the wind and the vibrations of the strings on a
violin. The essential feature that all these phenomena have in common is
periodicity, a pattern of movement or displacement that repeats itself over and

over again.
,}“JLJ“L‘-“ CAJBJJ}M‘&LL&‘EM‘QW‘ :QJJAZS);JMZALJ‘ LS,)-‘L‘]J;ULS‘JSQ__?A
Oles g0 el ) Faly masll 8 SN ey el ad) Glasily dgmay dase )l e Caly
@A A1 Y 5 A el (e daad oo 5 edy sl o el sk ads IS Led o 385 S dpliY) 5 el
JOIUSS 5 15 e 4wl ay
3.2 Linear Restoring Force, Harmonic Motion
One of the most important cases of rectilinear motion 1s that produced by a
linear restoring force. This force whose magnitude is proportional to the
displacement of the particle from the equilibrium peosition and whose
direction is always opposite to that of the displacement. Such a force is exerted
by a spring obeying Hooke’s law.
W jlaia Cudiy 5 5all oda Aydad Sapea 558 Lgiaad ) Ol aiiee bt e S jall CVls aal (pe 2al
Ol 5l iy Loty 03S 58 A1V oladl e Lails 58 Lealadl o)) 51ll pun g (g puandl Al ) e

A 5l pasy
XEX—il o (1)
1 Equilibrium
Eq. (1) represents the displacement of the _ Pgsition
spring from its equilibrium length. L P ]

X 1s total length

— (0 ——ple— X —p

. ~WWwwww- ™
spring
Elastic force exerted by a spring obeying _

Hooke's law

a 1s upstretched (zero) length of the

Fa—x
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F=—kx  ..... (2) Restoring Force (Hooke's law)
where £ 1s called Stiffness (Spring Constant) Ay all Jalas
Sub. Eq.(1) in Eq.(2)

= —kx

F=—-k(X—-a)+mg....(4) t ER

where the positive direction 1s downward: Equilibrium @+ Z’;{_g =

m, Position \ %
x=x—-(a+57) Ny 2

k f =

% 1s the change in displacement due to body weight. x %
mg l - !

.'.x:X—a—T

X—a=x+-%...(5)
Sub. Eq. (5) in Eq. (4)

. B oe g

..F——k(x+T)+mg

kmg
k

F=—kx—

+mg
This give again:

W F=—kx

—kx = mx

~mi+kx=0.... (6)
Eq. (6) 1s second order differential Eq. with constant coefficients of the
harmonic oscillator or linear oscillator. As equation y"' + py' + qy = 0, so, to
solve such equation we shall employ the frail method in which the function
(AeT) is the trail solution, where (q) is a constant to be determined.

Ay ohd Qe g 8 Oddal 430 CBllea I3 AN A ol (e lali Aldlas 8 (6) dolas
&l (q) O s (Aeh) Jall a4 g3l 5 Alseall Jal & ol iy jh aladiiu
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Sub. Eq. (7) and (9) in Eq. (6)
mq?Ael®+kAqit=0 ] +Aet
mq*+k=0

2

mq*° = —k
k

2 - _—

q— m

g =F [ [k
cq=F[E=T

) k
where [ =+vV—-1, /——=W0
m

Sub. Eq. (10) n Eq. (7)
nx = AeTiwelt (1D

For a linear differential eqns., solution are additive, so, the general solution 1s:
€= A eetipieT et .. (12)

using Euler’s formula
e =cosu +isinu

So we can rewrite Eq. (12) in the form:

x = A (coswyt + isinwyt) + A_(cos wyt — i sin wyt)
=A,coswyt + 1A, sinwyt + A_coswyt — i A_sinw,t
= (A, + A_) coswyt + (iA, —iA_)sinw,t

x = asinwyt + bcos wyt ... ... (13)

where a=iA, —iA_ and b=A, +A_
The real solution of Eq. (13) is:
x = bcoswyt

or x =Acos(wot+86,) ... ... (14) Sinusoidal Oscillation of Displacement x
3
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where: w, 1s angular frequency @30 20
A is amplitude (the maximum value of x) (32150 4as alael) daud)
Equation (14) represent cosine function for two angle
So, Acos(wyt + 6,) = A(cosw,t cos 8, + sinw,tsin6,)
Leta=Acosf,, b=Asing,
a’+ b? = (Acos8,)? + (Asin8,)? = A%*(cos?8, + sin?6,)
A = (a®+ b?)V/?

b _ Asinf,
a Acos B,

=tané,

g, = tan~1 (g) woenn:(15) Tnitial Phase

T, 1s time period of the oscillation (time required for one complete cycle); that

1s, the period 1s the time for which the product (wt) increase by just (21)
S 550l a3 G 31 423 (e

x = Acos(w,t+6,) x = Asin(w,t + 0,)

fo = Linear frequency of oscillation (is the number of cycles in unit time)

G M Bas ) &l sall sae Jiay (o) 5 ATl el aa il
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Example:
A light spring is found to stretch an amount b when it supports a block of mass
m. If the block 1s pulled downward a distance [ from its equilibrium position

and released at time = 0 , find the resulting motion as a function of t.

Solution:
In the static equilibrium
F=—kb=—-mg

m
k=19

b
Now find the constants for the equation of motion
x = Acos(wyt + 8;)
at t=0, x=l andx =0
x = —Awysin(wyt + 6,)
X =—Awgsin(wy(0) +6,) =0
Awy# 0, A=1 isspring length,w, is angular frequncy
A=1=X4x
~ 8in(By) =0 = 05,=0

x = Acos(wyt)

-'-x=lcos(\/%t)

3.3 Energy Consideration in Harmonic Motion

Consider a particle moving under a linear restoring force= —kx. Let us
calculate the work done by an external force f, in moving the particle from the
equilibrium position x = 0 to some position x.

Jatl £ s ) 358 Adaud  aiall Jadl) Caead — o duhad e 38 00 Cant ey s i i
x e page Mx =005 g e o pusad)
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«W = [Fdx= [ kxdx=>kx?

2

The work W 1s stored in the spring as potential energy 2l ZaaS (alill ¢ 340 Jadl)

“V () =W =2kx?=Ey...(2)

Total spring energy
E=E,+E,
E=>mi?+-kx? ....(3) =
2 2 m
2E k
—=x2+—x?
m m
2. 28 kK o
m m

fom (E— Exz)l/z ...... (4)

m m

This can be integrated to give (t) as function of x

. dx dx
dt X

» Derive the Equation of Time
eWhen x = Acos 0

Rewrite Eq.(5)
=[ = == 1 = o
BT e
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el

il

- -

x% = A% cos? 0
s A2 —x?2 =A% — A%*cos? @
= A%(1 — cos?8)

A% — x? = A%sin? @

VAZ —x2 = Asiné......(8)
From Eq.(7)

dx = —Asin@ dé ... ... (9)
Sub. Egns.(8) and (9) in Eq. (6)

f Asm6
AsmG

m
t=— |-Jde
t=— ’"9+ ...... (10)
~ x=Acos@

X -, X
5 cos@ === 0 = cos 1(—
A A

N’

Sub. Eq.(11) in Eq. (10)

eWhen x = Asin@
s &k _X — cin-1(%
--sm9—A=>9 sin (A)

dx = Acos@ dé ..... (b)

A% — x? = A% — A%sin? 0 = A%(1 — sin?0)

A? — x% = A% cos? 0
VA2 — x2 = Acos?@ ..... (c)
Sub. Eqgns. (b) and (¢) n Eq. (6)



Chapter Three: Oscillations

z M

dillaa

- -

m Acos@
t =
fAcosG

x
Potential energy function of the harmonic oscillator.

1) at the upper point
X = Xpmax, V=10
1 1

-'-Ezimv2+§kx2
1
E=0+ Ek
Xmax = A
-'.E=1kA2—>A=\/2:E
2 k

2) at the lower point
X=0,V=Vpax
1 2

~E= "z‘mvmax
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1 2 1, 42
-muv ==-kA
2 max 2
2
s kA

v — —_—
max m

Viax = \/%A = Awy Maximum Velocity for Harmonic Oscillator

A = Umax
Wo

As the particle oscillates, the kinetic and total energy

potential energies continually change. The

i : ! kinetic ener
constant total energy is entirely in the form of "

kinetic energy at the center, where x = 0 and pobiriol sAeigy

X = *V,,4, and it 1s all potential energy at

extrema, where x = +4 and x = 0. £ s >

Sy 0585 G A3 KD Z8U 0585 ) ety A8 jally LKl ALY 5T capn]) s )l Leie
Sl vie 23dS Gk Sl Ld A e dE
3.4 Damped Harmonic Motion
The foregoing analysis of the harmonic oscillator is idealized in that we didn't
take into account frictional forces. These are always present in any mechanical
system. Consider an object 1s supported by a spring of stiffness & and there was

a viscous retarding force varying linearly with the speed such as air resistance.

(B 3353 go Laily () 4S5 )5 KI5 8 e W)l Ml ol as M sl el il Jalal)
5_yaaia da )] Adiaa 58 Sllia CailSy fr adip ye Jalae il lilee o s of g il | SailSie aUsS gl
,;\,SJ\L,,LLJL&)..J\@QL;

Equilibrium
Position | I
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= —kx .. .. (1) (restoring force)

=—CcX.... (2) (retarding force)
Equation of motion then:

s—=kx —cx =mX .......(3)
mX + cx + kx = 0...(4) Differential Eq. of Motion for Damped Harmonic Oscillator
Use trail method to solve Eq. (4)

x=Ae®

: mal—z(Ae"")+ci (Ael)+kAel =0 2

: dt2 dt - ax: + bx +c= 0

mq*Ael"+cqAel™ +kAel =0] = Ae® —bF/b? — 4ac,
X =

mq*+cq+k=0 .... (5) Auxiliary Equation 2a

—c+Vc?2 — 4mk
g= T (6)

> c¢? > Amk (Over Damping)
Here g will be real and negative and the motion will be nonoscillatory
q1 # q and (x) decaying to zero exponentially with time.

Gl ¢ 5 sasy ¢ — 4mk )il

_ {yl o3 e {Ale‘ylt Jibail 34 A Jid 02 > 4mk D
Y2 A,e 2t Ofdls Giidds (pied Sl g e

The general solution for displacement is: a"um s 45')ﬂ ‘ “”S" il gttt
oLl x AV dad Led gy
x=A, et A, e 12t . (7) a3 e sinal
» ¢% = Amk (Critical Damping)
Here g will be real also, and negative and the motion will be

nonoscillatory. (x) decaying to zero exponentially with time but in shorter

time.
= A e
=9 ==
et
= — =X =
1 ¥ {Azte"’t

10
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The general solution for displacement 1s:
x=A,e "+ Ate "t ... (8) X,
x=eV(A4; +tA,) ... (9)

Over Damping

Critical Damping

Ofdle Oiids Gied dlid g Laie s zoall Jiladll A JS ¢ = 4mk s
B3 gaseall 1 Lo xr A 30 Al Lo Jnagh y B e 35l ¢S5 I iy gl
> ¢* < 4mk (Under Damping)
Here q will be complex; the imaginary part of its value gives an oscillatory
motion.

—c¥FJcZ—-4amk
2m

= 2 2
—c+ (c2-4m amk- 30 ) -
_ am?2 4m?2 c 2 c
q = Y==— =3 % = 5
2m 2m 4m
2 2 k
g 2(Z__k e (C__i) Wh = [—
_ o \/4m (41112 m) _ et 4m? m . m
q 2m 2m
—cF 2my%-wgy?
2m

q=— =FJr?—w?
Qi =——+iJwo2 —y2=—yFiw, Complex Conjugates Roots

2m

where wy = \/wy? — y? is Natural Frequency

@1 =—y+iw
G =—Y—iw
The Displacement then:

. _ (=y+iwy )t —y—=iwq)t
”x_A+e Y 1) +A_e(y 1)
el =cosu +isinu Euler’s Formula

11
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x=e V' [(iA, —iA_)sinwt+ (A4, +A_)cosw;t]
x=e " (asinw;t + bcosw;t)

where a =i (A, —A_), b=A, +A_
or x=Ae Ycos(w t+6p).......(11)

where 6, = tan™! (2)

a
A = (a* + b?)!/2

X

Equation (11) shows that the fwo curves are given by x = +Ae™"" and x =
+Ae~ "t form an envelope of the curve of motion because the cosine factor
takes on values between +1 and -1, including +1 and -1, at which points the
curve of motion touches the envelope. Accordingly, the points of contact are
separated by a time interval of one-half period.
(AdLs) odiiis e Odled Lo Jaasi baie J3laill o dls Jid Al €2 < 4mk s 8
o e Lo il Kl 5 K’ () 555 Lin 35 jall 5 )

i B oM&y x = 4+4e7V 5 x = +4e77 Ll Giiiaie dpa (11) Adledl)l el
AN ae Clial W laie dyia 33 i Gdatll Jala Joaaii SUA ¢ SUA 8, CaBall ¢ 45 jal)

3.5 Energy Consideration for Damped Harmonic Oscillator
The total energy of the damped harmonic oscillator is given by the sum of the
kinetic and potential energies o Al 2y 8 el il 1 a2 2L

12
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To find time rate of change of E,, we have to differentiate E; with respect to t:

B lomxZ 4 lope ™

dt 2 dt 2 dt
= mxx + kxx

% = (m& + k)% ... ... (2)

We have the Eq. of motion for the damped harmonic oscillator
miX+cx+kx=0

mx + kx = —cx ... ... (3)

Sub. Eq. (3) in Eq. (2)

4B .2
L= —CX (4)

This equation represents the rate at which the energy E; dissipated as frictional
heat by virtue of the viscous resistance to the motion.

Lails (alls laia a5 SMSEaY) Canay 5 ) a1 400SH 28N 2055 Jama (Jlad Alalaal) 028

3.6 Forced Harmonic Motion (Resonance)

In this section, we study the motion of a damped harmonic oscillator that 1s
subjected to a periodic driving force by an external agent.

Consider a damped harmonic oscillator motion affected by an external force
(Fuyt) that varying as a cosine wave with time t, the angular frequency w and
amplitude (Fy) such that 550 & siaall Jaaaall a8l gil) Caiall 4S ja (e yai Lia
F,.t = Fycos(wt +6) ... ... (1) Oa )l g daum Allay T3 3 o) Al A 2
Foe = Fy €540 (2)

pall 85 fise (648 GG Sl
There are three forces attached on the body:

(—kx) 1.’!)43.\‘.}:43)3 °

1. Elastic restoring Force = —kx (—Ck) Uaanaday o5 o
2. The viscous damping force = —cx (Foxt) 22 )55 @
3. External force = F,,,; preall e 3 )5 all 4)0SH 3 gall ) S agle

SO (g il o3¢]  sana
13
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So, total force 1s:
& =KX — €% + Fopp = ME ... ... (3)
mi + cx + kx = F,,, = F, e!™W+9) ___ (4)
Eq.(4) represent differential damped harmonic oscillator motion affected by an

external force (F,,; ). Suggested solution of this equation as:

x=A ei(wt+6’) ...... (5) sl 51 Qi aS jall dlolas JL.S (4) Ailas
(Fext) 451_;)&3}3 \)QJ"URL\AEJM

at  dt
!
x=iAweWt0) = jyux (6)
_ xR s
t t
¥ =i2 Aw? elwt+0') = j22y — 2y (7)

Sub. Eqns.(5) ,(6) and (7) in Eq. (4).

—mAwZ2eiWt+8") 4 - Awi oiWt+8') 4 L gpi(wt+6") — F, ei(wt+6)] * p—i(wt+6")
. —mAw? + iwcA + kA = Fyel®Wt+0) g=i(wt+8')
—mAW? + iwcA + kA = F, [e™t e e=iWt g=i0" |
—mAW? + iwcA + kA = Fye'(6-9')

—mAw? + iwcA + kA = F,[cos(8 — 8") + isin(8 — 8)]
where ¢ = (6 — 08') = Phase dif ference (Phase angle)
Separation between real and imaginary terms, we get:

—mAw? + kA = Fycos(8 —8") = Fycos ¢

iwcA = iF,sin(6 —0') =i F,sing

A(k —mw?) = Fycos @ ... ... (8)

cWA = Fysing ... ... (9)

Dividing Eq. (9) on Eq. (8)

cw Fysing

k-mw2  Fycos

14
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c

—wW L = e i =
s tan Q= 'km_z 2m ¥ m 2}’
W -
W= [—
. . Zyw m
. tan ¢ — woz—wz ------ (1 1)

Squaring and adding Eqns. (8) and (9)
A%(k — mw?)% + c?*w?A? = FZ(cos? ¢ + sin® @) = F§
A? [(k — mw?)? + c?w?] = F¢

i = Fo
(k —mw?)? + c2w?
f A= 2. (13)

T Jk—mw2)Z4c2w2

by dividing the numerator and denominator on m

Eo

A= m
272 2,2
kK mw L CeW
m m T m

So, in term of ¥ and w,

A —= Fo/m

J (w2-w?)” +ay2 w2

...... (14) Steady State Oscillation Amplitude

Eq. (14) represent the amplitude (A) as a function of the driving frequency (w).
The maximum value of amplitude valid only at (w =w,) (Resonance
Frequency). To find this frequency equal differential amplitude equation by
sero.

(W = Wp) ic b 5ias Aasall (6 poaill Zagll (W) dla) 2l AU (A) Aasdl il (14) Aslaa

(O8N 33 5)
dA Fo/m

_ d
dw  dw J(w%—w2)2+4}'2w2

_Fy d
m dw

1
[(WE — w?)? + 4y2w?] ™2

Fy d —
== [wg + w* — 2w w? + 4y2w?] ™2

15
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dA _ F
dw m

— S
(71) [wg +w?* —2wé w? + 4y?w?]72- [0 + 4w> — 4wiw + 8y2w]

_Fo (—1) 4wi-awi w+8y2w

2 3\/ (w2-w?)* +ay2w?

m

_ —Fy 4wi-4awi w+8y%w

Zm 3\/ (wg—wz)2 +4y2w2

dA _ -Fy 4wi-4wiw+8y?w L om
dw o 2m 3 2 2Fqgw
(wg—w?) +4y2w? 9
dA _  mF, aw (w?-wj +2y?) . (w2-w§ +2y?)

dw 4mFyw 3\/ (wg—w2)2+4)'2w2 3\} (wg—w2)2+4}’2w2

a_ g

dw
aw2—wg+2y2=0
w? =wg — 2y?

w=w, =W —2y?)¥2.... (15) Resonant Frequency Equation

where w,. = resonant frequency for maximum amplitude.

In case of weak damping, that is, when ¢ « 2Vmk or Y K wy

Then wy=w,

From Eq. (14) and (15) we can find A4,,,,, 1n Resonant frequency.
w2 =wg—2y%.... (16)

Sub. Eq. (16) and (17) n Eq. (14)

i = Fo/m
J(2y2)2+4)’2(wg—2}'2)
A= Fo/m
J4y4+4y2w§—8y4
A= Fo/m

;4y2w§—4y4

16
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Fo/m

,/4}'2(w(2)—y2)

Fo/m

- | (18)
Ty /(W[‘;—Yz)

In other form:

A=

APPSR (20)

Zmeo CWo
F O—ZAmaxymWO = AmaxCWO

Sub. Eq. (20) in Eq. (14)
A=Amaxy (21)

A= Amax¥
\/(Wo“Wo'*‘Y)z'i'Yz

_ AmaxV _ AmaxVY _ AmaxV

T2z JzE o Vzy

_=y

&= Zmy

This means that y 1s a measure of the width of the resonance curve. Thus, 2y is

the frequency difference between the points for which the energy is down by a

factor ofi from the energy at resonance because the energy is proportional to

A%

oanaii oill) ouhadil) e a0 i) (5,8 Jiad 2y SN o5l s ub)dwgsa,.yaig;._,m
A? e s G Y o)) Al Caiad )iy 43U Lagas

17
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Amplitude
Small damping

Medium damping

\_ Heavy damping
N\
/ \~

Driving
frequency

Another way of designating the sharpness of the resonance peak for the driven

oscillator is in terms of the parameter (Q) called Quality Factor of the resonant

system.
oo U (Q) ddbnall Clasm J3A (g (a5 (6 poll Q] (8 )l 2 s el (¢ 31 48y 5k
Ol de Sl dalae
Wy
0= 2 (23)
In the case of weak damping el Jilaill Al e
~ .‘ﬂ
Q~22....(28)

The total width Aw at the half energy points is approximately

w = 2nf
Aw Af.~ 1
............. 6
Wo  fo (26)
giving the fractional width of the resonance peak, OV Al (A5l (el

Q = 10* [ quartz oscillators |

18
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Example:
Determine the resonance frequency and the quality factor for the damped
oscillator 1f the damping frequency = % . Then find the phase angle 6 if the
applied frequency 1s %
Solution:

w, = (wo? — 2y*)*/?

_ 2 _ 2Wo*\1/2
= (w 6 )

= 7 _ k 7
- 8 m 8

we W@ [
=Wr_ e ) (l=187
0= = - 2;
2y w
AP = G
2
_ s 2%
- w
wi—( 20)2 w2 4%
_ o _i_1.4_1
Aep it

19
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- .

4.1 Introduction
We now examine the general case of the motion of a particle in three

dimensions. The vector form of the equation of motion for such a particle 1s
F=% ... (1) (Newton’s 2™ Law)

in which P = m# is the linear momentum of the particle.

= d(mv)
F= pranlERE (2)

This vector equation is equivalent to three scalar equations in Cartesian

coordinates. A fia J< ale Pk AU ?‘“‘-3'“ :lS_); oy Uiy
d ; .. 3 30 I cldlaaYy) a4 SIS e OB AW G

Ecza(mx)=mx i RRIEHER (s AP B A tuagy
d ; o

E, = E(my) =my ... 3)
d : ..

E = E(mz) =mZ

Ja (S 558l Jsal saae 1500 Sllia &1 5 all aiCaall YA auaad Jslall Sl dale 4g) )b 2 Y
T g 3 5y A0 (W

4.2 The Work Principle

That means the work done on a particle causes it fo gain or lose kinetic energy.
A el Al las o L) D) o aseall e Saial) Jadll of e 10s
Take the dot product of both sides of Eq.(1) with the velocity v:

F-v=
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2 #

il

;K ~dv
-E(v v)—ZvE

d .
. di)‘_a(V'V)

T odt 20

v - v = |v||v| cos 8=|v|?

L) =5 0

Multiply Eq.(4) by (m)
d(mv) d mv
T g (5)

= d mv -
Fp=2".5
dt 2
=S d 1 -
F v=—(—mv2)
dt \2

T T
Where (T = Emvz) is kinefic energy

Faoi =2
at
F-vdt =dT

=< dx A
= = vdt = dx

~ F+d% =dT (in one dimension)

In general (Three dimension) 7 = (x,y,2)

F-dr =dT  (Differential Form)
[F-dr =[dT (Integral Form)

The equation states that the work done on the particle is equal to the increment

in the kinetic energy.

_R:IS);.!‘QSM‘gésdg).l‘é}hq}\AéS)d‘ém‘?ﬂ‘géLa‘;Jm%g’lc el Jadll e
Jsb o auall & ot Ladie § @l J8 e pua e Jaldl Jaldl) Jiay s JalS5 oo (6) dilas @

o .
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4.3 Conservative Forces and Force Fields

The line integral represents the work done on the

particle by the force F as the particle moves along
its trajectory from A to B. P

Jadll o) e 3 pall Jlas lo adiay Jadll JuSil) o A

2sal ) akd | jusa e sole adiey jaiall =
A Ge gl jlisa e ady pial The work done by a force F is

the line integral [, F.d7

Eq. (6) states that the work done on a particle by the net force acting on it, in
moving from one position mn space to another, 1s equal to the difference in the
kinetic energy of the particle at these two positions, which mean that the work
done on the particle depend on the particle path in the space. This required
detailed knowledge of the motion of the particle from A to B to calculate the
work done on it by the force.

In the case of a special type of force called conservative force, the work done
by a force in moving a particle from point A to point B equal to the difference
in the kinefic energy of the particle at these two positions. Many of the

physically important forces are conservative type.

ssall o2ay (static force field) A8l 558 Jaa Lual ()5S laxic s a8 5all 4lls F S 13 e
RVIORRS

F.d7 adall die e 63 Jlaal 5 Bginall Jadl Ll @

Sy [Fd 7 aiall JalSs (e Jadll s (Sash Jagine Jlae 8 lyaiy psnll (IS 136 @
Al asllall 3 Bl loke o o (S

ASynd Adyain A5j0a by 1389 ¢ B 5 A oibill G jleadl e aaiey lia hal) JalS3 ¢S @
il U8 (e dile aall Jadl) (lual B alaiill ) A i) (e paseal

Do b W i3all (gl el (ppSly i Absiladll (goill Alls b Allad dboleall (S dde @
JE-d7 Jasl g jasall Jasl Glus b 31S8a 353 ol dbsilaall gl
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The tables below represent a comparison between conservative and non

conservative forces with examples for each one of them.

Conservative forces

Non conservative forces

The force is called conservative if | The force 1s called non conservative
work done by force is dependent only | force if work is done by the force 1s
initial and final position of body not | depend on path followed by body.

depends on path followed by body.

in close path is zero.

The work done by conservative force | The work done by non-

conservative force in a close path is

not Zero.

Conservative forces

Non conservative forces

Gravitational forces

Frictional forces

Magnetic force

Viscous forces

Elastic spring force

Air resistance force

Electric force

Tension in a string

Propulsion force of the rocket
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4.4 Potential Energy Function

The work mtegral in Cartesian coordinates given by:

JF-dr = [|F.dx+F,dy+Edz]....(1)

__9
e = dx
av
Fy=—$ AT — (2)
av
E, = oz

where V(x, v, z) is potential energy function (scalar function)
So, Eq.(1) become:

[F-dF = f[—‘;—:dx—;’—;dy—%dz]

[F-di =—[dv

o [Fedif ==[dV ....(3)

By comparing with Eq.(6) in pervious section

o [dT=— [adv
BB AV e Gliny —V 3T 38 ol e Ju

So, a general conservation of total energy principle:
T+V = Constant = E

1

E m v? =+ V(x.y,z) | (4)

When a particle moves in a conservative field of a force the sum of kinetic and

potential energies remains constant throughout the motion.



- .
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4.5 The Potential in a Uniform Gravitational Field

In the case of a projectile moving in a uniform field of force such as a particle
acted upon by gravity near the surface of the earth, only the gravity acts on the
projectile, vertical motion. Choosing the z-axis to be vertical, the following

equation of motion: 5 e 3 ja (e alitie s 8 Jlae s apuen o jat 13

P =_8_V:0 3\ syl < 13l oY mha O 8 A Y apdlall 5 48
- (3255013 3) (mg) 3580 Jhie (s Z ) 5ma olatly (535l
E=——=0 b s (1) 2¢=d) A0 Gaa3 o) amg Q36 el 7 ) 5me olaily 589
ay ' 5
P (1) ol
FE=—-==-m
- 9z 9 )
~ [dV=mg [dz

Viey,z) = Mgz + ¢ (Potential Function)

where c is an arbitrary constant and it is equal to zero at the earth’s surface. So
the energy equation becomes: Mo jha gl ey Ghliel Gl ¢ delsill 8
1 U \)\)ﬂ '('..me
sm(x* +y°+2°) +mgz=E .....(2)
So, for any given case the total energy can be calculated from the knowledge of

the 1nitial conditions of the motion.

AS Hall A0l Jo 500 48 jaa (e KK A8 Qi Sy dipma Alls (Y

4.6 Conditions for the Existence of a Potential Function

One dimensional motion of a particle is always conservative if the force as a
function of pesition only. That is, if we have a force, F(x), which is only a
function of position, then F(x) dx is always a perfect differential. This means

that we can define a potential function as
V=-[F-dx adsall A1y ol culS 13 Alsilaa Ll (155 (nly 30 miians a3 i Al

V=—[F-dx JaSi ;e 2gal A Qles (Ko dile Jaid
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In two and three dimensions, we would, in principle, expect that any force
which depends only on position, F(7), to be conservative. In general, this is not

sufficient, unless satisty certain criteria does a potential function exits

S 0S8 o) @3s Al A ) e AS )l Al 8 Ll
(A Y 13 ale JC5 Labdlas ()5S i a8sall dlla 368

E, =K (x. % 2) (1)
y y ) P& ) sxe sax xas = 5 < <
-Bagage gall Al (5S5 dile dima dagyd g 1) Y)
E, =E(x,y,7) <
Assume that a potential function is exist: Bagsge agall AN el
_ _
Fx o dx
v
E, =— 7 q . (2)
av
FZ = - 3;)

If we take the partial derivative of E, with respect to y

Uy _ %V 3) y Jawalh F, 1 4aul dasad sl
ady dy dx

e ®

' 65;2;; = a‘jcz;y """ )

% = ‘% N ()

aulilly Jo¥) lgaiide SNy 5yaiee dlla V' ¥ (golutia (4) 5 (3) othlaall cpa cpai¥) Caphall

A similar argument can be made with the pairs (F;,, E),(E.E)

OFy _ 9

ady T ox

Uy 38 (D)
0z ay

dFy _ 0Fz

0z ox’

These are the necessary conditions, on F,, F, and F, for a potential function to

exist. They express the condition that
7
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F-df =F,dx+F,d,+F,d, isan exact differential
Then the force components are indeed derivable from a potential function, and

the sum of the kinetic energy and potential energy is constant.

0sSis Vigyz) 2ol Ay (e diide Slad 0585 0l Gil$ia 8 dasaa (7) G c¥aledl cal€ 12
gall Al (exist) (a3 dagyds o5 SV oleall o3ag Ll 1)) ake 4y 4.l 43lhal) ¢ gane

5.7 Potential for the Inverse (Square Law of Force)
Gravitational force varies inversely as square of the distance measured from the
earth’s center. This inverse - square relation 1s also found to be the law of force

for electric fields of elementary particles.
(gesed gl Gl 3¢2)
(0! Jlan ) 4sa V) 4dlall Al 3y Login ddlecal) aije po Lo auliB Gaca o Gl B8
o) 3$5e (e Aalial dilieall pije pe s Lgile
ALl Sl 8l C3lailly ALl Jlae 58 (8 Jia Load 8 038 oSl pugll 3e )

The analytical form for the inverse — square law can be written as:

F= -kr— ...... (1) (The inverse — square law )

Where n: unit vector in the direction of the radius vector r
k: constant proportionality

The negative sign indicates that the force is attractive or pointing toward the

origin.

While positive sign denote a repulsive force pointing away from the origin.

(7 bl Cial a8 olail () Hhadll Cieal) AsIDU 4alaiY) sasgll : 7
il ol s k

o) abals ga dalie 4udlad o ogdll o) e ANV aidlud) BLAYY
(Jea) i e Baaine Al ogall ¢3S Latic Lunge BLAY) ()5S
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W F=— S e (3) (Inverse square law of force )

In Cartesian coordinate
wr=ix+jy+kz.... (4)

and

So when Sub. Eqns. (4) and (5) in eqn. (3)

F=—k (ix + jy + kz)(x? + y* + 72 (6)Inverse—square law in rectangular

coordinates
Consider that the potential function:

k
V(T') = —; ......... (7)
Gives the correct force, that 1s:

av d( k k . .
F(r)=— = = —;(—;) = g [ one dimension |

In three dimensions Eqn. (7) rewrite as:

vV _ -k
(x.y.z) — (x2+y2+22)1/2

Viga) = —Ki(x® +y>4-2%) /2

Then the force components needed to give the force function

E,=— Z—Z- = —kx(x% + y? + 22)~3/2)
E, = — g—; =—ky(x?+y*+2%)73/2} ......(8)
F=—Z = —ka(x? +y? +22)72

Note: k here is constant gravity while in the case of vibrational motion they

were constant elastic (Stiffness Constant)

435 pall il Jiay 4dd 4 51 Y1 AS el Alla 8 Laiy ddlad) ol iy Lia fo ;A0
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4.8 The Del Operator

If the force field 1s conservative so that the components are given by the partial
derivative of potential energy function.

AsalSl AdUal) Adla) A jad) coldidial) AV Jaxd o 8 g8l LS jal Sas Waie Unilaa o gll Qe S 13
We can now express a conservative force F vectorially as:

. v . oV 5 OV
ox jay dz

1. VV = GradientV or (grad V)

e Mathematically, the gradient of a function 1s a vector that represents the
maximum spatial derivative of the function in direction and magnitude.

e Physically, the negative gradient of the potential energy function gives
the direction and magnitude of the force that acts on a particle located in
a field created by other particles.

e The meaning of the negative sign is that the particle is urged to move in
the direction of decreasing potential energy rather than in the opposite

direction.

Vsl e VV

o olad¥ly Jlaall 8 ANA eagall Jumlill ey Laaly)

pwn o f5 A Bl laiey lad) Jaes 4selCll aslhall AN L)l o e Lilye
oAl Glasa e 7236 o A gonse

coSlaall ola¥ (e Yy sl dallall ails slail A5l e il sl ol a3 4ulld) 5Ly

10
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2.VXF =Curl f F ool asia (Gl) 5% cay VX F o
The condition that a force be conservative can be written compactly as

VXF=0.... (4) (Then The Force F is Conservative )

i J k
- a a8 a
VxF=E$a—Z
£ E &

3.V-F = divergence of F
(V-F ) 1s called the divergence of F which gives a measure of the density of
the sources of the field at a given point, which is of particular importance in

the theory of electricity and magnetism.

Al 5 2l gl 4 il 3 daga o 5 e adail 3 Jlanall S ulie a5 F (ael) (L85 Jias (V - F)

11
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Example 1: Find the gradient of scaler f = x> — 2xy® + y?z3
Solution:

Vi=iZLui¥ o 19

Vf—lax+]ay+kaz

a( x3-2xy5+y2z3 L A(x3=2xy5+y2z3 A(x3-2xy3+y2z3
( )+]( yS+y%2%) | 1 9 yS+y?z°)

Vf =1 dx ay a9z

o _:9 .3 5 . 0 . 5 313 9 . 2.3
Vf=i—(x 2xy)+]ay( 2xy> +y°z°) + k- (y°z”)

Vf =i(3x%2 —2y°) + j(—10xy* + 2yz3) + k(3y%z?)

Example 2: Find the curl of vector A = x2yi + xyzj — x2y?k

Solution:

i j k i k
— - ad d ad d d d
VXA= 3z 3 2z|=|x 3 o2

A, A, A, x%y xyz —x%y?
= i (5 - #9%) - 5 (D) —J (32 (=59 - 5 (229)) + k (52 vz — 55 (229)
= i(—2x%y — xy) — j(=2xy? — 0) + k(yz — x?)
VxA=i(=2x2y—xy) +j(2xy?) + k(yz — x?)

Example 3: Find the divergence of vector A= x2 yi + xyzj — x*y*k
Solution:

dA,
dx ady dz

12
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Example 4: Is the force field F = ixy + jxz + kyz conservative?

Solution:

i j k

vkp= |2 2 £
dx dy 0z
Xy Xxz yz

N 3 /@ 3 3 2

VxF =i(5-02) -5 (2) = (5:02) = 52 ) + k(5 2) — 5 ()

VXF =i(z—x)— —j(0—0) +k(z—x)

VXF =i(z—x)+k(z—x)

LT F20 - Ficton conservative, a2 deall (il ¢ feayggbally 4l

Example 5: For what values of the constants a, b and c 1s the force

F = i(ax + by?) + jexy conservative?

Solution:
i Jj k
VxF = A g 2
XF = dx ay dz

ax + by* cxy 0
=i (30 — 5 (cx0) = j (5 (0) = 5 (ax + by?)) + k (5= (cxy) — 5 (ax + by?))
=i(0—0)—j(0—0)+ k(cy — 2by)
VX F =k(c—2b)y

-

For conservative force must VXF=0
~c—2b=0
c:=2b

So F be conservative when ¢ = 2b

13
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Example 6: Find the force field of the potential Function V = x* + xy + xz.

Solution:

= av )% av

F__la_ ay_ dz

= L 0(x%+xy+xz LO(x2+xy+xz A(x2+xy+xz

Fo 00ty )_]( y )_k( y+xz)
dx ay dz

= g 52 T RS
F= lax(x + xy + x2) 3%y kazxz

F=—-Qx+y+2)i—jx—kx

(I‘est If F is conservative or not \
i ik
I d a a
Lo dx dy 0z

—2x+y+z) —x —x
ﬁxﬁ:i(aiy(—x)—%(—x))—j(%(—x)—%(—(2x+y+z)))+k(%(—x)—:—y(—(2x+y+z))
@xﬁ=i(0—0)—i(—1+1)+k(—1+1)=0

)
Y

Example 7: Find the potential energy for harmonic oscillator: a) two
dimensions b) three dimensions
Solution:

a. Two dimensions
F = —k,xi — k,yj

Conservative force = F = —VV

14
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ﬁest If F is conservative or not

i j k

== d d d
VX F= a 6__}1. a_Z
—kix =kyy 0

Qxﬁ =i(0—0)—j(0—0)+k(0—-0)=0

VxF = i((0) = 5 (ko) = (5 (0) = 5 (—ki)) + k(32 (~kay) = 55 (k)

~

/

= - dvy . dVy ,
F=—vW=-"2i--2

B dy?
% = kyx = dV, = kyxdx for x-coordinate
V= [ kyxdx = (N8
‘;—‘2’ = k,y = dV, = k,ydy  fory- coordinate
V= [ koydy =Zkay?
V=V+V

= it
A V =E k1x2 +;k2y2

b. Three dimensions

F == _klxi - kzyj - k3Zk

Conservative force =~ F = —VV
. - ave . dVy . dv.
F=-W=—"2i—-—2j—-—k
dx dy dz
dvy .
s ===l x=d dV = kyxdx for x-coordinate
X

1
V, = ]klxdx = §k1x2

avy

—= = kyy = dV;, = k,ydy for y-coordinate

dy

15
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il

il

1
V, = [koydy =-kyy?
dvy,
V, = [ kyzdz = >kyz?
V=V+V+V

1 1 1
o V = E‘ k1x2 +Ek2y2 + §k3ZZ

16

for z-coordinate
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5.1 Introduction

[t is very convenient in describing the motion of a particle, to use a coordinate
system which, itself, is moving. A coordinate system fixed the motion of a
projectile, although the earth is moving and rotating.

aldas JUial) Jass e il aay o e clflaal Al aladiuly cameal) A4S a Ciuay faa A0 (e
o (g4 A )95 AT AS ja Alls 3 065 Al g ()Y Jasi e A8 A4S . Cla o) aaduall oY)

(A3 gy i g e ya YT i

5.2 Translation of the Coordinate System
Y

The simplest type of motion of the

coordinate system 1s that of pure

translation. In figure
OXYZ: the primary coordinate

system (assumed fixed).

Oxyz: the moving coordinate

system.

In the case of pure translation, the respective axes OX and Ox, and soon,

remain parallel

OX |l Ox
oY |l Oy
0Z | 0z

P: is the particle position.

R: is the position vector of the particle P in the fixed system.
7 is the position vector of the particle in the moving system.
R

o- 1s the displacement of the moving origin 00

(Oxyz)as);:u)\ )J\AA}\;\A)LAAJ(QXYZ)@N\ )J\MS‘&A)MM‘JPJ&AW:\SPM")SA!
&P@Q&M\ )M‘é‘j\xiﬁg@‘ )JM‘&A)EAA&)_,;A&LB.\::;M@@\ J,\;A\&Sﬁujsfdb&
Al gt
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S ) gad) 8 Pasall aa gadaia : R
R=F+Ry .uu (1) A8 yaddll JJLTA'.;’P&“%-‘"&{A‘\-#M HT
00 ‘LS)ASAM Juayl Mh\)’\ : RO

dR _ V=15+ ‘7; s s (D) The velocity of particle P with respect to fixed
& and moving system

2p - -
%t—? =M= ... ... ... (3) The acceleration of particle P with respect to

fixed and moving system
where: f/:, and A o are the velocity and acceleration respectively, of particle P of
the moving origin.

v and a are the velocity and acceleration respectively, of particle P in
the moving system.

-

A, = 0 For not accelerating moving system

-

A=a.........(4) When moving system is not accelerating (not rotating)

?LE.'\M ujsathﬁc.miqh)@m\)ﬂ)ﬂd\aw\wﬂm’h Jaaatll ) s 3 A dlalall
(aS)aZ.J\ _)_,\;A\Qj:\ej\)_,_\]\ i< jal) alandl) g0y EIPEA|

5.3 Inertial Forces

F=mA...... (D) Newton’s second law

When the equation of motion in the moving system is

F=m(a+A4,)=md+mA,.....(2)

S

F — mffo =ma........(3) Equation of motion in the moving system
where: (—m/fo) called the inertial term

we can write  “F” = ma

Inertial terms in the equations of motion is sometimes called inertial forces or

fictitious forces. Such "forces" are not due to interactions with other physical

bodies, rather, results from the acceleration of the reference system. Inertial



Chapter Five: Moving Reference System rhiad dlilia

terms are present if a noninertial coordinate system is used to describe the

motion of a particle.
A 0 g il ) ¢ Alaladl o gl Llal en 4S all c¥ales i (Inertial terms) S sl as ()
i s daaliie V) 5 gl £1 53 (e £ 95 sh 6 AV plua¥) ae P asall Jelil (e il ¥ M gall" 038 Jia
[(reference system) (x> jall pUaill & jlus e
(Inertial terms) 558 2a (5 45 ja Aolas e Y (3 QUaill SIS g2 (5 ) gucail Q.a_.\).d\ allaill ol

5.4 General Motion of the Coordinate System
Z

Now consider the references
system undergoes both translation
and rotation relative to inertial
system as in figure.

—_

R: is the position vector of the particle P in the inertial system.

7: is the position vector of the particle in the moving system.
ﬁo: 1s the displacement of the moving origin 00
(S5 plail An &) ) 905 AN AS a & jay paas jall ) ) (a5
vr=ix+jy+kz ... (1)
~“R=Ry+ix+jy+kz .....(2

By differentiating with respect to the time,

dR _dRy , .. | .. . di _dj _dk
o +lx+]y+kz+xdt+ydt+zd,t R -
\
1
Velocity due to rotation

of the OXYZ coordinate

Velocity of the
particle relative to

the moving system

x L4y %4.2‘;_’: gaall o Oan 8 A atd) ) glaall Rually apeal) ey Jid i% + Jy + k2 25

dt
Ga il 595 (3o At Aoyl ) (OXYZ) AS_yaial) da slaiall Al ) gall 48yl de i
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r=ix+ jy+kz ...... (4) Velocity of the particle relative to the moving system

$® (WA) 36 (W) 9 axiall 1 Jsa sl DU (g (A) A el Basg al (jhsall oladl () il

Let axis of
rotation

A: be the direction of the axis of rotation of the OXYZ system.
w: be the angular speed of rotation about that axis.
As in figure

W=wA.... (4) Angular velocity of the rotating coordinate
system

The direction of the angular velocity vector is given by the right-hand rule as in
the definition of the cross product.
(@AY Gl iy a3 LS ) Al Bael S (e 235y 4 ) 5l Aoyl 4aia ola)

dj

. N ) di dk _ . R

The time derivatives of the basis vectors (I i 'Z) in term of the rotation w,
d' —_— Pl

we can express d—; as the cross product of ® and i

di = —

Similarly

ol (12)
......... 12

o8 B B

dt

T T e P
sx—ty—+z—=x@x )+ y@xj)+2z(@x k)

=w X (ix+ jy + kz)

=@ XT
So the velocity of particle P, due to rotation of the fixed coordinates system.
dR _dRy | .. | .. o S
dt—dt+ix+]y+kz+wxr ......... (13)

4
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dR dRo S
— F+oXT
dt — dt T

V=V, +7+®XT....(14)
The above eqn. express the relation between the time derivatives of the position

vectors of a moving particle in two coordinate systems one system regarded as
fixed, the other as moving and rotating. The term V, is due to translation of the

moving system. In the case of pure rotation, it not presents.

Bl Lansal ¢afhan) cypellai 8 o jate apund af gall lgatiad die 1 bl oy A8 2t (14) Lskedl
138 Jad 4l g0 A8 all o pS Ala 3 AJGEY) AS il el g ) g (Ji) &ty AV

ey )
For any vector q
dq L E%E
X
b =qtwXgq
where:

q is the time rate of change of q in the rotating system (iq, + jq, + kq)

W X Ei is the time rate of change of q arising from rotation of coordinate system
= x e )
(Qx T Qy dt +q; Fr.
Let find the relation between the acceleration vectors, from eqn. (14)
(14) Wslaall (pe Alaal)  glaall Al gall 5 AMEY) AS jall Ala & Jnatl) ilgatia (0 481 Sla) LS

dR

dt=V=Vo+r+m><r

dR _ =
dt=Vo+(lx+]y+kz)+(me)
d*R _ =

o — Vgt — (lx+]y+kz)+—(wxr)

A=A+ (i +]y+k2) +GXT+D X
B e W s sl g SR = m s w Tas ;
=Ao+lx+xz+]y+yz+kz+zz+wxr+wx[lx+]y+kz+
dk

di dj
—_— — Z.—.
atT Var T 25
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=Ao+ii+jy+ki+i T+y L+ 2T+ OXF+BX[F+a(@x D) +
y(@ % j) + z(® X k)|

=A, +F+x@XD+y@x))+2(@XxXKk)+DdXF+ @
X[7+ o x (ix + jy + kz)|

Ag+F+@x (ix+jy+ ki) +ox7+w X [f+ (@ x7)]

Ag+TF+OXT+OXT+OXT+0 X (0XT)

A=A, +F+20XF+ 0 X7+ ® X (@ XT) ...... (15)

Eqn.(15) giving the acceleration in the fixed system in terms of the position,
velocity, and acceleration in the rotating system.

A,: Acceleration of the moving system

#: Acceleration of particle in the rotating system
2w x 1: Coriolis acceleration

& x r: Transverse acceleration

o X (@ x 7): Centrifugal acceleration

(03%) oadall plail) & Jiaadll g de puall 5 2 sall Cam o Al Gl 8 Jiaatl) Jiad (15) Adataall

& pasal plaill Jiaasi 24,

sl alaill 8 dapuall Jynas o
odssS dmad: 20 X 7
o aiusal) il G X 7
OS5 Ol Hsna gai Lails 4ai a5 (6 5Sall dall) a8 sall 82 jUall 38l Jinad 1 @ X (@ X 7)
sl o g e
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Example:

A wheel of radius b rolls along the ground with constant forward speed V.

Find the acceleration, relative to the ground, of any point on the rim.

Adla)) e dlaai 4 (DU duailly

Solution:

Let us choose a coordinate system fixed to the rotating wheel, and let the

moving origin be at the center with the x-axis passing through the point in

question,

DAY Sl g L & jatall pafianl (el ia o g ) e gl e e e Lgdl Oua

oo 4 daall 35S 50 (55S) Cuay 3 ikl Alaall Cull lflaal JUad aa3 Y ) ang Jigaall sl gy & ey
V, dhall ey alliey o2y Jual! ddais

Position vector is: © = ib
Velocity vector is: 7 =0
Acceleration vector is: # = 0

The angular velocity vector is given by:

v, il Ly
w=kw=k— = dlAe
b o SUIET

for the choice of coordinates shown; therefore, all terms in the expression for
acceleration vanish except the centripetal term:

(38 al) iall an fae e 530 il Alslaa & Qi 3 508
0 =0 « i@y
A=7t+20Xr+oXT+oX(@X7T)+A4,
=0+0+0+wx(@x7)+0
=wX(wx71)
= kw X (kw X ib)

Vo 0 - 02 -
=k;x(k%x1b)=k%x(kxz)
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o© =%
= -k XjJ==-(-0

2
HA=—- '% is always directed toward the center of the rolling wheel.
Bl Aaall S je oladly Laily g oS
Example:

A bicycle travels with constant speed V, around a track of radius p. What is the
acceleration of the highest point on one of its wheels?

On Y 4kl el (& daadll L p ookl Cial ads Gk e B B3l 430 4a)
faal yall Eilae

Solution:

Choose a coordinate system with origin at the center of the wheel and with the

x-axis horizontal pointing toward the center of curvature C of the track. Rather

than have the moving coordinate system rotate with the wheel, choose a system

in which the z-axis remains vertical, the 0xyz system rotates

0335 ¢iBlae 5 V) Aoy 401 A4S ja Al sl

adaly cildlaal Uai SB35 g o ylad Caial (5 10 Jlue Jsa

X Jsae 038 Gusy dalpall dlae S 5e oS5 4l JaY)

ssaadly (€) Gkl L8 Soe () dadls iy
Adaidll 8 dde dlaall cladl die s Lagee LAy Z (50 seal)

p O

W W lie 4 j4e pa Hsn (0xy2)

angular velocity express as:
Vo
p

w=k

Acceleration of the moving origin 4, 1s given by:
- o Va2 juh\“ e
A, = 17 el Caas

= Sl diaas

each point on the wheel is moving in a circle of radius b with respect to the

moving origin, the acceleration in the (oxyz ) system of any point on the wheel
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2
is directed toward (o) and has magnitude ‘%. Thus, in the moving system we

have okl Cual) b bl Caai il @ et dlaall e ddais JS
Baghidl i Jiaatls 3Satd) Ja¥) il Ly (Aaall

=R 2 2 - - -

7= —kV—Z- ('%) 4ady (0) snianBidlaall e ALB4Y (0xyz)

for the point at the fop of the wheel. Also, the velocity of this point in the
moving system is given by:

Py, Alaal) e daas Jlei i
so the Coriolis acceleration is
v B w
2wxr—2(pk)x( jV,)
g
p
Because the angular velocity @ 1s constant, the transverse acceleration is zero.
The centripetal acceleration is also zero because
@ XF=0 M@ =0 b (<l ), Sua) 4l @ 4yl 3l de
e 0585 G jaiuall Jiaadl
e = (5 S el Clall i SllXS
e el e ok /A Vo _ _
wx(er)—Fkx(pkxbk)—O (kxk)=0
The net acceleration, relative to the ground, of the highest point on the wheel is
aad) e dhads ol 3 S Qs
A=F+20xT+aoxi+ax(@x7)+4,
2 2 2
= R DL 0 02
b P p

j=3VL2i_VL2
P b
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5.5 Dynamics of a Particle in a Rotating Coordinate System

The fundamental equation of motion of a particle in an inertial frame of
reference 1s

—=/T=1'3+25x1":+w_"xf+5x(5xf)+/fo

The equation of motion in a noninertial frame of reference as
ZF—mA,—2m@XF—madX7—madx (@x7)=mf....(2)

Eqn. (2) represents the dynamical equation of motion of a particle in a
noninertial frame of reference subjected to both real, physical forces as well as

those inertial forces that appear as a result of the acceleration of the noninertial

frame of reference.
L5)§u'“ 4l @Qﬁ)@d&)ﬂwaﬁ)ﬂ e Q@\h\&*@]&)ﬂ\ﬂdw Jiad (2) lolas
é_)_,.aﬂ‘ e &;ag)an JU:Y\ &)L;J:\A.'fus )+L3¢ﬂ\ 9_'3‘3.“ _)}.4”\

F = (Physical force) isljisg

F(Cemrifugal)

-

F.or = —2m® X 7 (Coriolis force) _dg)Sss Fransvers
m
N R ] _ :
Firans = —mw X 7 (Transverse force) iapiud sl o

s

Feont = —m@ X (0 x 7) (Centrifugal force) i:S,all 53Ul 55l

—mA, (Inertial term due to translational of coordinate system ) Sl ) geaidll 2

(m‘ Q\.’\S\LY\ XA)L.\A b\AJL) )J\A.A]\ -'u)la.u Q‘)JJ %) 4;3\.1.“ 3)3.“ Jiad —mAO
(SAY) alual¥W 58 (e 4aili g3 oS (e IS Balall 4lAll cliiall (e 4nils AN ) gl 5 68

"E" = mF = m(ix + jj + kZ) . oo (3)
where
"F" = F:COY' + ﬁtrans + ﬁcent - mAO sse s sus (4)

10
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F(transverse)

I:(Coriolis)

> F(centrifugal) r

1. The Coriolis force is particularly interesting. It is present only if a particle is
moving in a rotating coordinate system. Its direction 1s always perpendicular
to the velocity vector of the particle in the moving system. The Coriolis force
thus seems to deflect a moving particle at right angles to its direction of
motion.

e This force is important in computing the trajectory of a projectile.

e Coriolis effects are responsible for the circulation of air around high- or
low-pressure systems on Earth's surface. In the case of a high-pressure
area, as air spills down from the high, it flows outward and away,
deflecting toward the right as it moves into the surrounding low, setting
up a clockwise circulation pattern. In the Southern Hemisphere the

reverse 18 true.

2. The transverse force is present only if there is an angular acceleration (or
deceleration) of the rotating coordinate system. This force i1s always

perpendicular to the radius vector r in the rotating coordinate system.

3. The centrifugal force is the familiar one that arises from rotation about an
axis. It is directed outward away from the axis of rotation and is

perpendicular to that axis.

& paial) punll Jra ) Jaci 544l o3a i Gl ol jatal) B! U b awiall de o) 4nte e

o ke e Ao gae Ll g 30 jlse 0 any

11
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5 il 03¢ dagall cliylatl) 'y
trajectory of projectile 43l jlus lus o
b e g bl gy )l bl iy shldl 8 2L ol jse g Ugsual g8 @l 0l o
s siadl 3 SI Caal & el alaily (5503 O 2L Jslad el Laviall shlie Al i a ,Y)
_C_‘:MuaSa.“_,
850l 03a 5 a4l ) gall Clflaa¥) dashaie 48 jal (5 5) ) Janad aal g Ladie asd jedad A jeiidl 5 g8l) 2
(T) Dbl Cuaidad e 4y sae Lyl 5SS
dagae 56y Olsall Hsae e Tams Ll 4o il 638 5 jsan Jsa o)y sall (e L 3 jUal) 6 68l 3

Ade

Example:
A bug moving out ward with constant speed u along the spoke of a wheel,

which is rotating with constant angular velocity ® about a vertical axis, find all
the forces acting on the bug. Then find how far the bug can crawl before it starts
to slip, given the coefficient of friction u between the bug and the spoke.
Jss @ 4Gl agy) ) de juy s alae () plad ey Gl 3L (s ) & et (Aa gay) 5 da
alaa ) Lale BY 3L Taii of U8 5odall ey canl) &3 \ggle i N gl JS s gagee Hmae

L sh plall g 5 pdall G SSEAY)
Solution

First, let us choose a coordinate system fixed on the wheel, and let the x-axis
point along the spoke in question.

M\Kﬁa&\d#uhﬂaﬁg(x) JM‘QA)MJM\Q.EQGQ\:GL\A\L)&AJ\SM
o Pl =itut =

ix =iu

P
v u=constant = ¥ =0

for the velocity and acceleration of the bug as described in the rotating system.
If we choose the z-axis to be vertical, then

w=ko =&=0 [istmesy WM (2, snalt s 1 1

The various forces are then given by the following:
12



Chapter Five: Moving Reference System

F'COT - _Zma—)‘ X f'

= —2m(kw) X (iu) = —2mwu(k X i)

Foor = —2mwuj

= —m(kw) X [(kw) % (ix)]
= —mw?[k x (k X ix)]
= —mw? [k X jx]
= mw?xi
#F —mAy —2m&@ X7 —ma X7 —md x (@ X 7) = mi
F—0-2mouj —0+mwxi=0
F = 2mowuj — mw?xi
Here F is the real force exerted on the bug by the spoke
Alaall clls J8 (0 8 pdall e 5 Fgall 4aall 5 6l Jiad F
Because the force of friction F has a maximum value of slipping starts when
F = umg lesic alaall lgied & o S5 SIS 5 8 ()
|ﬁ| = umg = [(2mou)? + (mw? x)?] /2
u? m?g? = 2mou)? + (mw?x)?
(mw?x)? = u?>m?g? — (2mwu)?
m2w4x2 — #Zngz _ 4m2w2u2
m2w*x? = m2(u2g? — 4w?u?)

£2 = m?(u?g?-4w?u?)

m2 w*

_ (WPgP-1w?u?)'/z

X o2

The distance the bug can crawl before slipping
OY VL a8 o) Ji 8 plall Leadadi ) ddlsall o
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