

Al-Hamdaniya University
College of Education
Physics Department
Third class

Analytical mechanics

محاضرات الميكانيك التحليلي لطلبة المرحلة الثالثة

Survey to subject of analytical mechanics for third year of physics

CHAPTER (1): Fundamental Concepts Vectors.

CHAPTER (2): Newtonian Mechanics.

CHAPTER (3): General Motion of a Particle in Three Dimensions General.

CHAPTER (4): Gravitation and Central Forces Gravitational Force between a Uniform Sphere and a Particle.

CHAPTER (5): Dynamics of Systems of Particles Center of Mass and Linear Momentum of a System.

References:

1- Golwala, Sunil. "Lecture notes on classical mechanics for physics 106ab." Publisher: CreateSpace Independent Publishing Platform (2014).

2-

كتاب الميكانيك التحليلي المؤلف / كرانك ر فاولس ترجمة الدكتور / طالب ناهي الخفاجي

1.1 Vector Definition

The motion of dynamical systems is typically described in terms of two basic quantities: *Scalars and Vectors*.

حركة الانظمة الديناميكية توصف عادة بدلالة كميات عددية او اتجاهية

A scalar is a physical quantity that has magnitude only.

It is completely specified by a *single number*, in *appropriate units*. Its value is *independent* of any *coordinates* chosen to describe the motion of the system.

Examples of scalars include mass, density, volume, temperature, and energy.

Mathematically, scalars are treated as real numbers. They obey all the normal algebraic rules of addition, subtraction, multiplication, division, and so on.

Scalar represented as

A, B, C... without upper notation or letter with brackets: $|\vec{A}|$, $|\vec{B}|$, $|\vec{C}|$

الكمية العددية هي كمية مادية لها مقدار فقط.

يتم تعريف الكمية العددية بشكل كافي برقم واحد، بالوحدات المناسبة. وتكون قيمتها مستقلة عن أي إحداثيات مختارة لوصف حركة النظام.

من الأمثلة على الكميات العددية الكتلة والكثافة والحجم ودرجة الحرارة والطاقة.

رياضيا، تعامل الكمية العددية كأرقام حقيقية. تخضع لجميع القواعد الجبرية الطبيعية للجمع والطرح والضرب والقسمة، إلخ.

A Vector has both magnitude and direction.

Unlike a scalar, a vector requires a *set of numbers* for its complete specification. The values of those numbers are coordinate system *dependent*.

Examples of vectors include displacement in space; other examples of vectors include velocity, acceleration, and force.

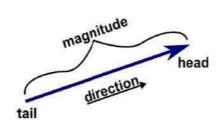
Mathematically, vectors combine with each other according to the parallelogram rule of addition.

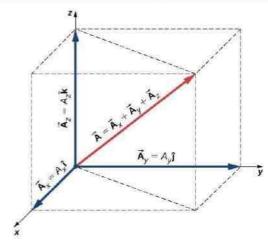
Vector represented as \vec{A} , \vec{B} , \vec{C} with upper notation.

الكمية الاتجاهية كمية تتحدد بكل من المقدار والاتجاه.

على عكس الكمية العددية ، تتطلب الكمية الاتجاهية لوصفها بشكل كامل مجموعة أرقام تعتمد على احداثيات النظام.

من الأمثلة على الكميات المتجه الازاحة و السرعة والتعجيل والقوة.





In equation form Vector given as:

$$\vec{A} = [A_x, A_y, A_z]$$

 A_x, A_y, A_z projections of \vec{A} along the coordinate axes x, y, z.

1.2 Vector Algebra

• Equality of Vectors

Two vectors are equal if, and only if, their respective components are equal.

$$\vec{A} = \vec{B}$$

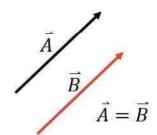
يتساوى المتجهان اذا تساوت مركباتهم المتناظرة والمتجهين المتساويين يكونان متوازين ولهما نفس الطول. لكن ليس بالضروري لهما نفس الموضع.

If and only if

$$A_x = B_x$$
, $A_y = B_y$, $A_z = B_z$

Or

$$[A_x, A_y, A_z] = [B_x, B_y, B_z]$$



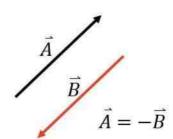
Negative Vectors

سالب اي متجه يكون متجه جديد معاكس بالاتجاه كل مركبة فيه تساوي سالب المركبة المناظرة في المتجه الاول

$$\vec{A} = -\vec{B}$$

If and only if

$$A_x = -B_x$$
, $A_y = -B_y$, $A_z = -B_z$
Or $[A_x, A_y, A_z] = -[B_x, B_y, B_z]$



Vectors Addition and Subtraction

جمع اي متجهين يكون متجه جديد مركباته توجد من خلال جمع المركبات المتناظرة في المتجهين

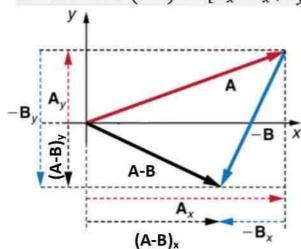
The addition of two vectors is defined by the equation

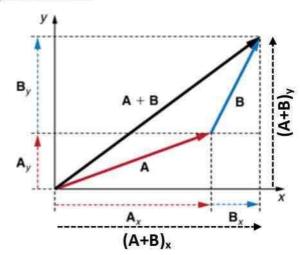
$$\vec{A} + \vec{B} = [A_x, A_y, A_z] + [B_x, B_y, B_z]$$

$$\vec{A} + \vec{B} = [A_x + B_x, A_y + B_y, A_z + B_z]$$

The subtraction of two vectors is defined by the equation

$$\vec{A} - \vec{B} = \vec{A} + (-\vec{B}) = [A_x - B_x, A_y - B_y, A_z - B_z]$$





• Multiplication by a Scalar

عند ضرب المتجه بمقدار ثابت يتكون متجه جديد يتغير طوله اعتمادا على مقدار الثابت

If c is a scalar and A is a vector,

$$C\vec{A} = C[A_x, A_y, A_z]$$

 $C\vec{A} = [CA_x, CA_y, CA_z] = C\vec{A}$

$$\overrightarrow{A}$$
 $\overrightarrow{B} = 2\overrightarrow{A}$

• The Null Vector

The vector $\vec{O} = [0, 0, 0]$ is called the **null** vector. The direction of the null vector is undefined. $\vec{A} - \vec{A} = \vec{O} = 0$ \vec{A} $-\vec{A}$

المتجه الصفري هو المتجه الذي جميع مركباته تساوي صفر

• The Commutative Law of Addition

جمع المتجهات يخضع لقانون التبادل

جمع المتجهات يخضع لقانون التوزيع

$$\overrightarrow{A} + \overrightarrow{B} = \overrightarrow{B} + \overrightarrow{A}$$

(H.W) Prove that

• The Associative Law

 $\vec{A} + (\vec{B} + \vec{C}) = (\vec{A} + \vec{B}) + \vec{C}$

جمع المتجهات يخضع لقانون التجميع (ترتيب الحدود)

(H.W) Prove that

• The Distributive Law

 $C(\overrightarrow{A} + \overrightarrow{B}) = C\overrightarrow{A} + C\overrightarrow{B}$

(H.W) Prove that

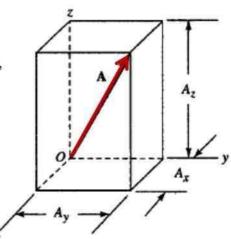
C is scalar.

• Magnitude of a Vector

The magnitude of a vector \mathbf{A} , denoted by $|\vec{A}|$ or by \mathbf{A} , is defined as:

$$\mathbf{A} = |\vec{A}| = [A_x^2 + A_y^2 + A_z^2]^{1/2}$$

Geometrically, the magnitude of a vector is its length, that is, the length of the diagonal of the rectangular parallelepiped whose sides are A_x , A_y , A_z .



من الناحية الهندسية ، فإن مقدار المتجه يمثل طوله ، أي طول قطر متوازي المستطيلات الذي جوانبه هي مركبات المتجه

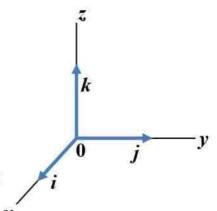
• Unit Coordinate Vectors

A unit vector is a vector whose magnitude is *unity*. There are three unit Coordinate vectors which also called *basis* vectors.

$$i = [1,0,0]$$
, $j = [0,1,0]$, $k = [0,0,1]$

Any vector can be expressed in terms of these vectors:

$$\vec{A} = iA_x + jA_y + kA_z$$



متجه الوحدة هو المتجه الذي مقداره وحدة واحدة

Example:

Find the sum and the magnitude of the sum of the two vectors A = (1,0,2) and B = (0,1,1).

Solution:

$$\vec{A} + \vec{B} = (1,0,2) + (0,1,1) = (1+0, 0+1,2+1) = (1,1,3).$$

 $|\vec{A} + \vec{B}| = (1+1+9)^{1/2} = \sqrt{11}$

1.3 Vector products

1.3.1 The Scalar Product

Given two vectors \vec{A} and \vec{B} , the scalar product or "dot" product, $(\vec{A}.\vec{B})$, is the scalar defined by the equation:

$$\vec{A} \cdot \vec{B} = A_x B_x + A_y B_y + A_z B_z$$

Laws of scalar product algebra

$$\bullet \ \vec{A} \cdot \vec{B} = \vec{B} \cdot \vec{A}$$

Commutation law

•
$$\vec{A} \cdot (\vec{B} + \vec{C}) = \vec{A} \cdot \vec{B} + \vec{A} \cdot \vec{C}$$

Distribution law

•
$$(C\vec{A}) \cdot \vec{B} = C(\vec{A} \cdot \vec{B})$$

Multiplication by scaler

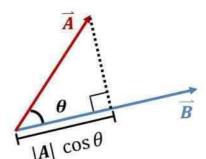
 $\vec{A} \cdot \vec{B}$ equal to the length of the projection of (\vec{A}) on (\vec{B}) times the length (\vec{B}) .

$$(\overrightarrow{B})$$
 يساوي طول المسقط من \overrightarrow{A} على \overrightarrow{B} مضروب بطول

From analytical geometry the cosine of the angle between two lines given as:

$$\cos \theta = \frac{A_x B_x + A_y B_y + A_z B_z}{(A_x^2 + A_y^2 + A_z^2)^{\frac{1}{2}} \cdot (B_x^2 + B_y^2 + B_z^2)^{\frac{1}{2}}} = \frac{\vec{A} \cdot \vec{B}}{AB}$$

$$\vec{A} \cdot \vec{B} = AB \cos \theta$$



Properties of the Scalar Product

1.
$$\vec{A} \cdot \vec{A} = |\vec{A}|^2 = A^2$$

2.
$$\vec{A} \cdot \vec{B} = 0 \implies \vec{A} \perp \vec{B}$$
 i. $e \quad \theta = 90^{\circ}$

3. If (i, j, k) is an orthonormal basis then:

$$i \cdot i = j \cdot j = k \cdot k = 1$$

$$i \cdot j = j \cdot k = k \cdot i = 0$$
(H.W) Prove that

4. If
$$\vec{A} = iA_x + jA_y + kA_z$$

$$\vec{B} = iB_x + jB_y + kB_z$$

$$\therefore \vec{A} \cdot \vec{B} = (iA_x + jA_y + kA_z) \cdot (iB_x + jB_y + kB_z)$$

$$\vec{A} \cdot \vec{B} = \mathbf{i} \cdot \mathbf{i} A_x B_x + \mathbf{i} \cdot \mathbf{j} A_x B_y + \mathbf{i} \cdot \mathbf{k} A_x B_z + \mathbf{j} \cdot \mathbf{i} A_y B_x + \mathbf{j} \cdot \mathbf{j} A_y B_y + \mathbf{j} \cdot \mathbf{k} A_y B_z + \mathbf{k} \cdot \mathbf{i} A_z B_x + \mathbf{k} \cdot \mathbf{j} A_z B_y + \mathbf{k} \cdot \mathbf{k} A_z B_z$$

$$\therefore \vec{A} \cdot \vec{B} = A_x B_x + A_y B_y + A_z B_z$$

Example:

Given the two vectors $\vec{A} = 2i + j - k$, $\vec{B} = i - j + 2k$, find $\vec{A} \cdot \vec{B}$

Solution:

$$\vec{A} \cdot \vec{B} = A_x B_x + A_y B_y + A_z B_z$$

 $\vec{A} \cdot \vec{B} = 2 * 1 + 1 * (-1) + (-1 * 2)$
 $\vec{A} \cdot \vec{B} = 2 - 1 - 2 = -1$

Some Application of Dot Product

1. Low of Cosines

If $\vec{A} \cdot \vec{B}$ and \vec{C} are the sides of a triangular, then:

$$\vec{C} = \vec{A} + \vec{B}$$

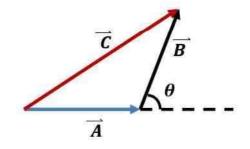
$$\vec{C} \cdot \vec{C} = (\vec{A} + \vec{B}) \cdot (\vec{A} + \vec{B})$$

$$= \vec{A} \cdot \vec{A} + \vec{B} \cdot \vec{A} + \vec{A} \cdot \vec{B} + \vec{B} \cdot \vec{B}$$

$$= \vec{A} \cdot \vec{A} + 2\vec{A} \cdot \vec{B} + \vec{B} \cdot \vec{B}$$

$$= |\vec{A}^2| + 2\vec{A} \cdot \vec{B} + |\vec{B}^2|$$

$$\therefore C^2 = A^2 + 2\vec{A} \cdot \vec{B} + C^2 = A^2 + B^2 + 2AB \cos \theta$$



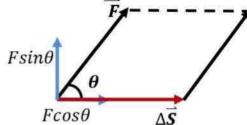
2. Work

Suppose an object under the action of a constant force (\vec{F}) undergoes a linear displacement $(\Delta \vec{S})$, as shown:

$$\Delta W = F \cos \theta \, \Delta S$$

where θ : is the angle between \vec{F} and $\Delta \vec{S}$

$$\Delta W = \vec{F} \cdot \Delta \vec{S}$$



Example:

If $\vec{A} = 2i - j + 2k$ and $\vec{B} = 4i - 3k$, find the magnitude of \vec{A} and \vec{B} and the angle between them.

Solution:

$$|\vec{A}| = A = (A_x^2 + A_y^2 + A_z^2)^{1/2} = [2^2 + (-1)^2 + 2^2]^{1/2} = \sqrt{9} = 3$$

$$|\vec{B}| = B = (B_x^2 + B_y^2 + B_z^2)^{1/2} = [4^2 + (-3)^2]^{1/2} = \sqrt{25} = 5$$

$$\vec{A} \cdot \vec{B} = (2 * 4) + (-1 * 0) + (2 * -3) = 8 + 0 - 6 = 2$$

$$\vec{A} \cdot \vec{B} = AB \cos \theta$$

$$\therefore \cos \theta = \frac{\vec{A}.\vec{B}}{AB} = \frac{2}{3*5} = \frac{2}{15}$$

$$\therefore \theta = \cos^{-1}\left(\frac{2}{15}\right) = 82.3^{\circ}$$

Expressing any Vector as the Product of its Magnitude by a Unit Vector: Projection التعبير عن المتجه كحاصل ضرب لمقداره في متجه الوحدة: المسقط

$$\vec{A} = iA_x + jA_y + kA_z$$

Multiply and divide on the right by the magnitude of A:

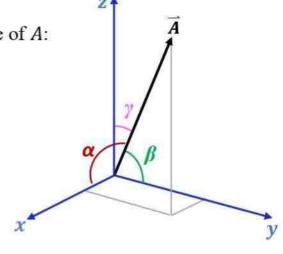
$$\vec{A} = \left(i\frac{A_x}{A} + j\frac{A_y}{A} + k\frac{A_z}{A}\right)A$$

The *direction cosines* of the vector \vec{A} are:

$$\cos \alpha = \frac{A_x}{A}$$

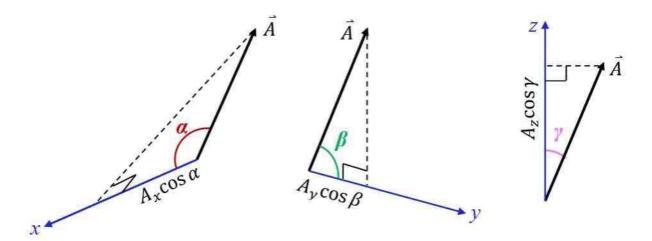
$$\cos \beta = \frac{A_y}{A}$$

$$\cos \gamma = \frac{A_z}{A}$$
Direction cosines



where: α , β , and γ are the *direction angles*.

 α is the angle between \vec{A} and the x-axis β is the angle between \vec{A} and the y-axis γ is the angle between \vec{A} and the z-axis



$$\vec{A} = A(\mathbf{i}\cos\alpha + \mathbf{j}\cos\beta + \mathbf{k}\cos\gamma) = A(\cos\alpha + \cos\beta + \cos\gamma)$$
Or $\vec{A} = A\vec{n}$

where \vec{n} is a unit vector whose components are $\cos \alpha$, $\cos \beta$, and $\cos \gamma$. Consider any other vector \vec{B} . Then, the projection of \vec{B} on \vec{A} is:

$$B\cos\theta = \frac{\vec{B}\cdot\vec{A}}{A} = \vec{B}\cdot\vec{n}$$

where θ is the angle between \vec{A} and \vec{B} .

Example:

If $\vec{A} = 2i - 3j + 4k$ is a vector, find the unit vector of \vec{A} and the direction cosines and direction angles.

Solution:

Fortifier:
$$|\vec{A}| = A = [2^2 + (-3)^2 + 4^2]^{1/2} = \sqrt{29}$$

$$\vec{n} = \frac{\vec{A}}{A} = \frac{2i - 3j + 4k}{\sqrt{29}} = \frac{2i}{\sqrt{29}} - \frac{3j}{\sqrt{29}} + \frac{4k}{\sqrt{29}}$$
Direction cosines = $(\frac{2}{\sqrt{29}}, -\frac{3}{\sqrt{29}}, \frac{4}{\sqrt{29}})$

$$\cos \alpha = \frac{2}{\sqrt{29}} \implies \alpha = \cos^{-1}\left(\frac{2}{\sqrt{29}}\right) = 68.17^{\circ}$$

$$\cos \beta = -\frac{3}{\sqrt{29}} \implies \beta = \cos^{-1}\left(-\frac{3}{\sqrt{29}}\right) = 123.89^{\circ}$$

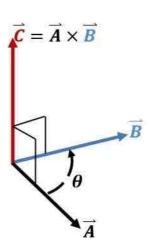
$$\cos \gamma = \frac{4}{\sqrt{29}} \implies \gamma = \cos^{-1}\left(\frac{4}{\sqrt{29}}\right) = 41.97^{\circ}$$
Direction cosines

1.3.2 Vector Product (Cross Product)

If $\vec{A} \cdot \vec{B}$ two vectors, the vector product $(\vec{A} \times \vec{B})$ defined by:

$$\vec{A} \times \vec{B} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$$

$$\vec{A} \times \vec{B} = i \begin{vmatrix} A_y & A_z \\ B_z & B_z \end{vmatrix} - j \begin{vmatrix} A_x & A_z \\ B_x & B_z \end{vmatrix} + k \begin{vmatrix} A_x & A_y \\ B_x & B_y \end{vmatrix}$$



$$\vec{A} \times \vec{B} = i(A_y B_z - A_z B_y) + j(A_z B_x - A_x B_z) + k(A_x B_y - A_y B_x)$$

or
$$\vec{A} \times \vec{B} = [(A_y B_z - A_z B_y), (A_z B_x - A_x B_z), (A_x B_y - A_y B_x)]$$

$$\mathbf{i} \times \mathbf{i} = \mathbf{j} \times \mathbf{j} = \mathbf{k} \times \mathbf{k} = 0$$

$$j \times k = -k \times j = i$$
 , $k \times j = -i$
 $k \times i = -i \times k = j$, $i \times k = -j$
 $i \times j = -j \times k = k$, $j \times i = -k$



Proof

$$i \times j = (1,0,0) \times (0,1,0)$$

= $(0-0), (0-0), (1-0)$
= $(0,0,1)$

$$:: \mathbf{i} \times \mathbf{j} = \mathbf{k}$$

$$|\vec{A} \times \vec{B}| = |\vec{A}| |\vec{B}| \sin \theta$$

or
$$\vec{A} \times \vec{B} = (|\vec{A}| |\vec{B}| \sin \theta) \cdot \vec{n}$$

where $(0 \le \theta \le 180)$ is the angle between \vec{A} and \vec{B}

 \vec{n} is the *unit vector normal* to the plane containing the two vector \vec{A} and \vec{B} .

$$\vec{n} = \frac{\vec{A} \times \vec{B}}{|\vec{A} \times \vec{B}|}$$

Properties of the Vector Product

1.
$$\vec{A} \times \vec{B} = -\vec{B} \times \vec{A}$$

2.
$$\vec{A} \times (\vec{B} + \vec{C}) = \vec{A} \times \vec{B} + \vec{A} \times \vec{C}$$

3.
$$C(\vec{A} \times \vec{B}) = (C\vec{A}) \times \vec{B} = \vec{A} \times (C\vec{B})$$

4.
$$\vec{A} \times \vec{B} = 0$$
 if (and only if) \vec{A} and \vec{B} are parallel or one of them is zero.

5.
$$\vec{A} \times \vec{A} = 0$$

Example:

Given the two vectors $\vec{A} = 2i + j - k$, $\vec{B} = i - j + 2k$, find $\vec{A} \times \vec{B}$.

Solution:

$$\vec{A} \times \vec{B} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 1 & -1 \\ 1 & -1 & 2 \end{vmatrix}$$
$$\vec{A} \times \vec{B} = \mathbf{i}(2-1) + \mathbf{j}(-1-4) + \mathbf{k}(-2-1)$$
$$\vec{A} \times \vec{B} = \mathbf{i} - 5\mathbf{j} - 3\mathbf{k}$$

Applications of the Vector Product

Torque

Let (\vec{F}) be a force act at a point P(x, y, z) and (\vec{r}) is a vector represented by: $\overrightarrow{OP} = \vec{r} = ix + jy + kz$

Then the moment (Torque) (N) about a given point (O) is defined as the cross product of (\vec{F}) and (\vec{r})

$$\vec{N} = \vec{r} \times \vec{F}$$

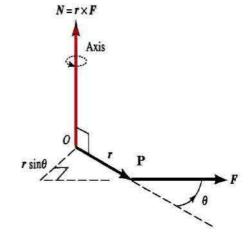
* The magnitude of the torque is

$$|\vec{N}| = |\vec{r} \times \vec{F}| = rF \sin \theta$$

 θ is the angle between \vec{r} and \vec{F}

* For several forces applied on a single body at different points, the moment add vectorially:

$$\sum_{i} (\overrightarrow{r_i} \times \overrightarrow{F_i}) = \sum_{i} \overrightarrow{N_i}$$



* The condition for rotational equilibrium is that the vector sum of all the moments is zero.

شرط الاتزان الدوراني ان يكون مجموع العزوم يساوى صفر

$$\sum_{i} (\overrightarrow{r_i} \times \overrightarrow{F_i}) = \sum_{i} \overrightarrow{N_i} = 0$$

The Triple Product

1. The Triple Scalar Product

It is defined by: $\vec{A} \cdot (\vec{B} \times \vec{C})$ and its value is a scalar.

Its properties are:

1.
$$\vec{A} \cdot (\vec{B} \times \vec{C}) = (\vec{A} \times \vec{B}) \cdot \vec{C}$$

The dot and cross product may be interchanged in the triple scalar product الضرب العددي والاتجاهي يتغير في حالة الضرب الثلاثي

2.
$$\vec{A} \cdot (\vec{B} \times \vec{C}) = 0$$
 if one of them is zero

3. If
$$\vec{A} = iA_x + jA_y + kA_z$$

$$\vec{B} = iB_x + jB_y + kB_z$$

$$\vec{C} = iC_x + jC_y + kC_z$$

$$\vec{A} \cdot (\vec{B} \times \vec{C}) = \begin{vmatrix} A_x & A_y & A_z \\ B_x & B_y & B_z \\ C_x & C_y & C_z \end{vmatrix}$$

2. The Triple Vector Product

It is defined by $\vec{A} \cdot (\vec{B} \times \vec{C})$, its value is a vector.

Its properties is:

$$\vec{A} \times (\vec{B} \times \vec{C}) = (\vec{A} \cdot \vec{C})\vec{B} - (\vec{A} \cdot \vec{B})\vec{C}$$

The triple vector product is anti-commutative and not associative.

1.4 Derivation of Vector

If the vector (\overline{A}) is a function of a single scalar variable u then it components, are also functions of (u). The vector may represent position, velocity, and so on.

اذا كان المتجه دالة لمتغير عددي عندها تكون كل مركبة فيه دالة لذلك المتغير. وقد يكون هذا المتجه موقع او سرعة

$$\vec{A}(u) = A_x(u)\mathbf{i} + A_y(u)\mathbf{j} + A_z(u)\mathbf{k}$$

$$\frac{d\vec{A}}{du} = \lim_{\Delta u \to 0} \frac{\Delta \vec{A}}{\Delta u} = \lim_{\Delta u \to 0} \left[i \frac{dA_x}{du} + j \frac{dA_y}{du} + k \frac{dA_z}{du} \right]$$

$$\therefore \frac{d\overline{A}}{du} = \mathbf{i} \frac{dA_x}{du} + \mathbf{j} \frac{dA_y}{du} + \mathbf{k} \frac{dA_z}{du}$$

Properties

1.
$$\frac{d}{du}(\vec{A} + \vec{B}) = \frac{d\vec{A}}{du} + \frac{d\vec{B}}{du} = \vec{A} + \vec{B}$$

2.
$$\frac{d}{du}(C\vec{A}) = \frac{dC}{du}\vec{A} + C\frac{d\vec{A}}{du}$$

3.
$$\frac{d}{du}(\vec{A} \cdot \vec{B}) = \frac{d\vec{A}}{du} \cdot \vec{B} + \vec{A} \cdot \frac{d\vec{B}}{du} = \vec{A} \cdot \vec{B} + \vec{A} \cdot \vec{B}$$

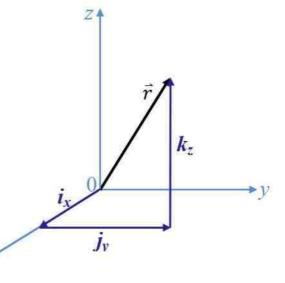
4.
$$\frac{d}{du}(\vec{A} \times \vec{B}) = \frac{d\vec{A}}{du} \times \vec{B} + \vec{A} \times \frac{d\vec{B}}{du} = \vec{A} \times \vec{B} + \vec{A} \times \vec{B}$$

1.5 The Position Vector of a Particle

The position of a particle can be specified by a single vector, the displacement of the particle relative to the origin of the coordinate system.

This vector is called the position vector of the particle. Given as:

يمكن تحديد موضع الجسيم بواسطة متجه واحد، وهو إزاحة الجسيم بالنسبة إلى نقطة الأصل لنظام الإحداثيات. وهذا المتجه يدعى متجه



$$\vec{r} = ix + jy + kz$$

where:

$$x = x(t), \quad y = y(t), \quad z = z(t)$$

The value of \vec{r} is:

$$r = |\vec{r}| = \sqrt{x^2 + y^2 + z^2} = S$$

The magnitude of displacement is called *distance*

مقدار متجه الموضع يسمى المسافة

1.6 The Velocity Vector

The derivative of \vec{r} with respect to t is called *velocity*:

مشتقة متجه الموضع بالنسبة للزمن تسمى السرعة

$$\vec{v} = \frac{d\vec{r}}{dt} = \frac{d}{dt} (ix) + \frac{d}{dt} (jy) + \frac{d}{dt} (kz)$$

$$\vec{v} = \mathbf{i} \frac{dx}{dt} + x \frac{d\mathbf{i}}{dt} + \mathbf{j} \frac{dy}{dt} + y \frac{d\mathbf{j}}{dt} + \mathbf{k} \frac{dz}{dt} + z \frac{d\mathbf{k}}{dt}$$

$$\frac{di}{dt}$$
, $\frac{dj}{dt}$, $\frac{dk}{dt} = 0$ in Cartesian coordinate only

$$\vec{v} = \mathbf{i} \frac{dx}{dt} + \mathbf{j} \frac{dy}{dt} + \mathbf{k} \frac{dz}{dt}$$

$$\vec{v} = i\dot{x} + j\dot{y} + k\dot{z}$$

$$\vec{v} = iv_x + jv_y + kv_z$$
Velocity vector

The magnitude of velocity is called **Speed**:

$$\dot{v} = |\vec{v}| = (\dot{x}^2 + \dot{y}^2 + \dot{z}^2)^{1/2}$$

مقدار متجه السرعة يسمى الانطلاق

1.7 The Acceleration Vector

The time derivative of the velocity is called the *acceleration*:

$$\vec{a} = \frac{d\vec{v}}{dt} = \frac{d}{dt}(i\dot{x} + j\dot{y} + k\dot{z})$$

$$= i\frac{d\dot{x}}{dt} + j\frac{d\dot{y}}{dt} + k\frac{d\dot{z}}{dt})$$
 $\vec{a} = i\ddot{x} + j\ddot{y} + k\ddot{z}$ The acceleration vector

Example:

The position vector of a particle at time t is given by $\vec{r} = (2t^2 - 5t)i + (4t + 2)j + t^3k$, find velocity and acceleration vectors of the particle at time t.

Solution:

$$\vec{v} = \frac{d\vec{r}}{dt} = (4t - 5)\mathbf{i} + 4\mathbf{j} + 3t^2\mathbf{k}$$

$$\vec{a} = \frac{d\vec{v}}{dt} = \frac{d^2\vec{r}}{dt^2} = 4\mathbf{i} + 6t\mathbf{k}$$

1.8 Vector Integral

Example:

A particle moves along the x-axis at time t with acceleration given by: $\vec{a} = 12t^2 - 6t + 6$, Find the velocity and displacement.

Solution:

$$\vec{a} = \frac{d\vec{v}}{dt} \rightarrow \int d\vec{v} = \int \vec{a} \, dt$$

$$\therefore \vec{v} = \int (12t^2 - 6t + 6) dt = \frac{12}{3}t^3 - \frac{6}{2}t^2 + 6t$$

$$\vec{v} = 4t^3 - 3t^2 + 6t$$

$$\therefore \vec{v} = \frac{d\vec{r}}{dt} \rightarrow \int d\vec{r} = \int \vec{v} \, dt$$

$$\therefore \vec{r} = \int (4t^3 - 3t^2 + 6t) dt = \frac{4}{4}t^4 - \frac{3}{3}t^3 + \frac{6}{2}t^2$$

$$\vec{r} = t^4 - t^3 + 3t^2$$

1.9 Tangential and Normal Components of Acceleration

When a particle moves along a curved path, it is sometimes convenient to describe its motion using coordinates other than Cartesian. When the path of motion is known, normal (n) and tangential (τ) coordinates are often used.

عندما يتحرك الجسيم على طول مسار منحني ، يكون من المناسب وصف حركته باستخدام إحداثيات أخرى غير الديكارتية. عندما يكون مسار الحركة معروفًا ، يتم استخدام الإحداثي العمودي (n) و الاحداثي المماسي (τ) .

$$\vec{v} = v \tau$$

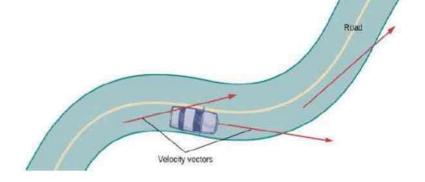
where τ is unit tangent vector

$$\vec{a} = \frac{d\vec{v}}{dt} = \frac{dv\tau}{dt}$$

$$\vec{a} = \frac{dv}{dt}\tau + v\frac{d\tau}{dt}$$

$$\frac{d\tau}{dt} = n$$
For small ψ

 $\Delta \tau \approx \Delta \psi \approx 0$



 $\overrightarrow{ au}'$

 $\Delta \tau \perp \tau$

$$\frac{\Delta \tau}{\Delta \psi} = \mathbf{1}$$

$$\frac{\Delta \tau}{\Delta \psi} \perp \tau$$

$$\frac{\Delta \tau}{\Delta \psi} = \boldsymbol{n}$$

Unit normal vector

Using chain rule

$$\frac{d\boldsymbol{\tau}}{dt} = \frac{d\boldsymbol{\tau}}{d\psi} \, \frac{d\psi}{dt} = \boldsymbol{n} \, \frac{d\psi}{dt}$$

$$\frac{d\mathbf{\tau}}{dt} = \mathbf{n}\frac{d\psi}{dt}\frac{ds}{ds} = \mathbf{n}\frac{d\psi}{ds}\frac{ds}{dt}$$

$$\frac{d\mathbf{\tau}}{dt} = \mathbf{n} \frac{\mathbf{v}}{\rho}$$

where
$$\vec{v} = \frac{ds}{dt}$$
, $\frac{1}{\rho} = \frac{d\psi}{ds}$

ρ is radius of curvature

$$\vec{a} = \frac{dv}{dt}\boldsymbol{\tau} + \frac{v^2}{\rho}\boldsymbol{n}$$

$$\vec{a} = \dot{v}\tau + \frac{v^2}{\rho}n$$

Equation of acceleration

معادلة التعجيل

$$|\vec{a}| = (\dot{v}^2 + \frac{v^4}{\rho^2})^{1/2}$$

مقدار التعجيل الكلي Magnitude of total acceleration

$$a_{\tau} = \dot{v} = \ddot{s}$$

Tangential acceleration

التعجيل المماسي

$$a_n = \frac{v^2}{\rho}$$

Centripetal acceleration

تعجيل قوة الجذب المركزي

Special Cases of Motion

• When the particle moves along a straight line.

$$\rho \to \infty \quad \Rightarrow \quad a_n = \frac{v^2}{\rho} = 0 \quad \Rightarrow \quad a = a_\tau = \dot{v}$$

The tangential component represents the time rate of change in the magnitude of the velocity.

• When the particle moves along a curve at constant speed.

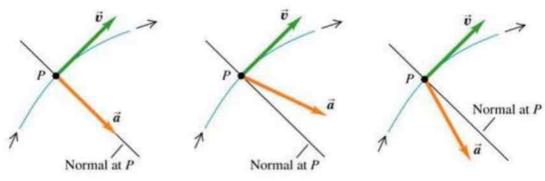
$$a_{\tau} = \dot{v} = 0 \quad \Rightarrow \quad a = a_n = \frac{v^2}{\rho}$$

The normal component represents the time rate of change in the direction of the velocity. (Centripetal acceleration)

- When the particle moves along a curve at non constant speed
 - At the increasing speed with certain rate \dot{v} , the acceleration is away from the center.

At the decreasing speed with certain rate \dot{v} , the acceleration is in the opposite direction.

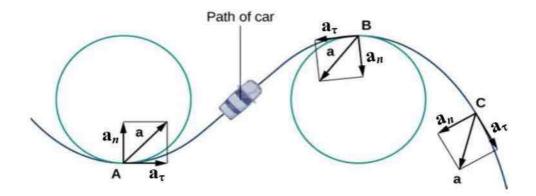
عند حركة الجسم على منحني بسرعة غير ثابتة فان كانت هناك تناقص في معدل السرعة عندها التعجيل ايضا يكون بعيدا عن المركز لكن بالاتجاه المعاكس



(a) Constant speed

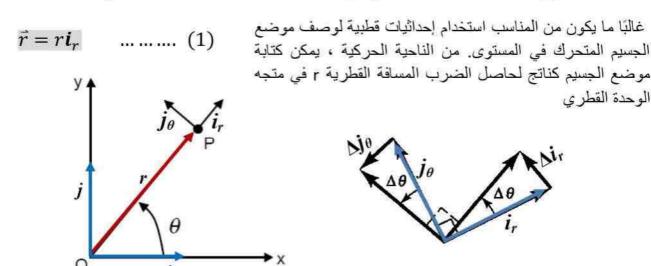
(b) Increasing speed

(c) Decreasing speed



1.10 Velocity and Acceleration in Plan Polar Coordinates

It is often convenient to employ polar coordinates r, θ to express the position of a particle moving in a plane. Vectorially, the position of the particle can be written as the product of the radial distance r by a unit radial vector i_r :



As the particle moves, both r and i_r vary

To obtain the polar formula for the velocity of P, we differentiate eqn. (1) with respect to (t).

Hence by the chain rule:

Any vector \vec{A} in the plan (i, j) can be expanded in the form:

$$\vec{A} = A_{x} i + A_{y} j$$

where A_x , A_y are the component of \vec{A} in the (i) and (j) direction respectively.

We will now evaluate the two derivatives $\frac{d\mathbf{i_r}}{d\theta}$, $\frac{d\mathbf{j_r}}{d\theta}$, we expand $\mathbf{i_r}$, $\mathbf{j_{\theta}}$ in terms of Cartesian basis vectors (i, j) this gives

$$\frac{\partial i_r}{\partial \theta} = -\sin\theta \ \boldsymbol{i} + \cos\theta \ \boldsymbol{j}$$

$$\frac{\partial \boldsymbol{j}_{\theta}}{\partial \theta} = -[\cos \theta \ \boldsymbol{i} - \sin \theta \ \boldsymbol{j}]$$

$$\vec{v} = \dot{r} i_r + (r\dot{\theta}) j_\theta \dots \dots \dots (9)$$

Velocity in polar coordinate

The velocity of P is the vector sum of an outward radial velocity (\dot{r}) and a transverse velocity $(r\dot{\theta})$

To obtain the acceleration we differential \vec{V} with respect to t:

$$\vec{a} = \frac{d\vec{v}}{dt} = \frac{d}{dt} (\dot{r} i_r) + \frac{d}{dt} [(r\dot{\theta}) j_{\theta}]$$

$$= \ddot{r} i_r + \dot{r} \frac{di_r}{dt} + (\dot{r} \dot{\theta} + r \ddot{\theta}) j_{\theta} + (r\dot{\theta}) \frac{dj_{\theta}}{dt}$$

$$= \ddot{r} i_r + \dot{r} \left(\frac{di_r}{d\theta} \times \frac{d\theta}{dt} \right) + (\dot{r} \dot{\theta} + r \ddot{\theta}) j_{\theta} + (r\dot{\theta}) \left(\frac{dj_{\theta}}{d\theta} \times \frac{d\theta}{dt} \right)$$

$$= \ddot{r} i_r + (\dot{r} \dot{\theta}) j_{\theta} + (\dot{r} \dot{\theta} + r \ddot{\theta}) j_{\theta} + (r \dot{\theta}) (-i_r \dot{\theta})$$

$$= \ddot{r} i_r + (\dot{r} \dot{\theta}) j_{\theta} + (\dot{r} \dot{\theta}) j_{\theta} + (r \ddot{\theta}) j_{\theta} - (r \dot{\theta}^2) i_r$$

Acceleration in polar coordinate

 $a_r = (\ddot{r} - r\dot{\theta}^2)$ The magnitude of the radial component of the acceleration

$$a_{\theta} = r\ddot{\theta} + 2\dot{r}\dot{\theta} = \frac{1}{r}\frac{a}{dt}(r^2\dot{\theta})$$

 $a_{\theta} = r\ddot{\theta} + 2\dot{r}\dot{\theta} = \frac{1}{r}\frac{d}{dt}(r^2\dot{\theta})$ The magnitude of the transverse component of the acceleration

If a particle moves on a circle of constant radius b,

$$a_r = b\dot{\theta}^2$$
 , $a_{\theta} = b\ddot{\theta}$

If the particle moves along a fixed radial line

$$a_r = \ddot{r}$$
 , $a_\theta = 0$

Example:

A particle moves on a spiral path such that the position in polar coordinate is given by $r = bt^2$, $\theta = ct$, where c and d are constants, find the velocity and acceleration as a function of time.

Solution:

$$\vec{v} = \dot{r} \boldsymbol{i_r} + (r\dot{\theta}) \boldsymbol{j_\theta} \qquad r = bt^2 , \dot{r} = 2bt, \ddot{r} = 2b$$

$$= \boldsymbol{i_r} \frac{d}{dt} (bt^2) + \boldsymbol{j_\theta} (bt^2) \frac{d}{dt} (ct)$$

$$= \boldsymbol{i_r} (2bt^2) + \boldsymbol{j_\theta} (bt^2c)$$

$$\vec{a} = (\ddot{r} - r\dot{\theta}^2) \boldsymbol{i_r} + (r\ddot{\theta} + 2\dot{r}\dot{\theta}) \boldsymbol{j_\theta} \qquad \theta = ct , \dot{\theta} = c, \ddot{\theta} = 0$$

$$= (2b - bt^2c^2) \boldsymbol{i_r} + (bt^2(0) + 2(2bt)c) \boldsymbol{j_\theta}$$

$$= (2b - bt^2c^2) \boldsymbol{i_r} + (4btc) \boldsymbol{j_\theta}$$

Example:

A particle is sliding along a radial groove in a rotating turn able has polar coordinate at time t is given by r=ct, $\theta=gt$, where c and g are constants, find the velocity and acceleration vectors of the particle at time t and the speed of the particle at time t.

Deduce that for t > 0 the angle between velocity and acceleration vectors is always acute

Solution:

$$\vec{v} = \dot{r} \boldsymbol{i}_r + (r\dot{\theta}) \boldsymbol{j}_{\theta} \qquad \dot{r} = c , \ddot{r} = 0 , \quad \dot{\theta} = g , \quad \ddot{\theta} = 0$$

$$\therefore \vec{v} = c \boldsymbol{i}_r + (ct) g \boldsymbol{j}_{\theta}$$

$$\vec{v} = c (\boldsymbol{i}_r + gt \boldsymbol{j}_{\theta})$$

$$\vec{a} = (\ddot{r} - r\dot{\theta}^2) \boldsymbol{i}_r + (r\ddot{\theta} + 2\dot{r}\dot{\theta}) \boldsymbol{j}_{\theta}$$

$$\begin{split} \vec{a} &= (0 - (ct)tg^2) \pmb{i_r} + (0 + 2cg) \pmb{j_\theta} \\ \vec{a} &= -cg^2t \pmb{i_r} + 2cg \pmb{j_\theta} = cg(-gt \pmb{i_r} + 2\pmb{j_\theta}) \\ \text{speed } |\vec{v}| &= [c^2 + c^2g^2t^2]^{1/2} = [c(1^2 + g^2t^2)]^{1/2} = c(1 + g^2t^2)^{1/2} \end{split}$$

To find the angle between \vec{v} and \vec{a}

$$\vec{v} \cdot \vec{a} = -c^2 g^2 t + 2c^2 g^2 t = c^2 g(-gt + 2gt) = c^2 g^2 t$$

$$\vec{v}$$
. $\vec{a} > 0$ for $t > 0$

Hence for t > 0, the angle between \vec{v} and \vec{a} is acute

2.1 Newton's Laws of Motion

Newton's Laws of Motion are as follows:

- Everybody continues in its state of rest or of uniform motion in a straight line, unless it is compelled by a force to change that state.
- 2. The change of motion is *proportional* to the applied force and takes place in the direction of the force.
- 3. To every action, there is always an equal and opposite reaction or the mutual actions of two bodies are always equal and oppositely directed.

قوانين نيوتن بالحركة هي:

- كل جسم يستمر على حالته من السكون أو الحركة المنتظمة على خط مستقيم ، مالم تؤثر عليه قوة لتغيير تلك الحالة.
 - 2. يتناسب تغير الحركة مع القوة المسلطة ويكون باتجاه تاثير القوة.
- 3. لكل فعل، يكون هناك دائمًا رد فعل مساو له بالمقدار ومعاكس بالاتجاه. الافعال المتبادلة لجسمين تكون دائما متساوية معاكسة بالاتجاه.

2.2 Newton's First Law: Inertial Reference Systems

The first law describes a common property of matter, namely, inertia.

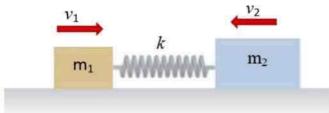
Inertia is the resistance of all matter to having its motion changed

يصف القانون الأول خاصية مشتركة للمادة ، وهي القصور الذاتي. القصور الذاتي هو مقاومة الجسم لتغير حركته

2.3 Mass and Force: Newton's Second and Third Law

Consider two masses m_1 and m_2 attached by a spring and they initially were at rest. If the two masses were pushed together, compressing the spring and then releasing them, so that they fly apart attaining speeds \vec{v}_1 and \vec{v}_2 respectively.

نفتر ض وجود كتلتين m_1 و m_2 مرتبطتين بنابض حلزوني وكانا في البداية في حالة سكون. إذا تم دفع الكتلتين باتجاه بعضهما ، عنها ينضغط النابض، ثم نتركهما بحيث ينفصلان عن بعضهما بسر \vec{v}_1 و \vec{v}_2 على التوالي وباتجاهين متعاكسين.



The ratio of the two masses:

$$\frac{m_2}{m_1} = \left| \frac{\vec{v}_1}{\vec{v}_2} \right| \qquad \dots \dots (1)$$

Eqn. (1) is equivalent to:

$$\Delta(m_1\vec{v}_1) = -\Delta(m_2\vec{v}_2) \qquad \dots \dots (2)$$

because the *initial* velocities of each mass are *zero* and the final velocities \vec{v}_1 and \vec{v}_2 are in *opposite* directions. If we divide by Δt and take limits as $\Delta t \to 0$ obtain:

$$\frac{d}{dt}(m_1\vec{v}_1) = -\frac{d}{dt}(m_2\vec{v}_2) \dots (3)$$

The product of mass and velocity, $m\vec{v}$, is called *linear momentum*.

So the second law can be rephrased as follows: The time rate of change of an object's linear momentum is proportional to the impressed force, F. Thus, the second law can be written as:

لذلك يمكن إعادة صياغة القانون الثاني للحركة على النحو التالي: القوة تساوي المعدل الزمني لتغير الزخم الخطى للجسم.

$$\vec{F} \propto \frac{d}{dt} (m\vec{v})$$

$$\vec{F} = k \frac{d}{dt} \ (m\vec{v})$$

where k is a constant of proportionality. Let k = 1

$$\therefore \vec{F} = \frac{d}{dt} (m\vec{v})$$

where m constant, finally express Newton's second law in the familiar form:

$$\vec{F} = m \frac{d\vec{v}}{dt} = m\vec{a} \qquad \dots (4)$$

 \vec{F} : is the net force acting upon the mass m; that is, it is the vector sum of all of the individual forces acting upon m.

From Eqn. (3)

$$\vec{F}_1 = -\vec{F}_2$$
 (5) Newton's third law

Two interacting bodies exert equal and opposite force upon one another.

2.4 Linear Momentum

$$\vec{P} = m\vec{v}$$
(1)

$$\vec{F} = \frac{d\vec{P}}{dt} \quad \dots \dots (2)$$

Sub Eqn. (2) in third Newton's law $\vec{F}_1 = -\vec{F}_2$

$$\frac{d\vec{P}_1}{dt} = -\frac{d\vec{P}_2}{dt}$$

$$\frac{d\vec{P}_1}{dt} + \frac{d\vec{P}_2}{dt} = 0 \quad or \quad \frac{d}{dt} (\vec{P}_1 + \vec{P}_2) = 0$$

$$\vec{P}_1 + \vec{P}_2 = \text{constant}$$
 (conservation of linear momentum)

: Newton's third law implies that the total momentum of two mutually interacting bodies is a constant.

The equation of motion for a particle subject to the influence of a net force, \vec{F} , writing as the vector sum of all the forces acting on the particle.

$$\vec{F} = \sum \vec{F_l} = m \, \frac{d^2 \vec{r}}{dt^2} = m \vec{a}$$
 کل جسمین یو ثر احدهما علی الاخر یقو ة متساویة و معاکسة بالاتجاه

Example:

A spaceship of mass M is traveling in deep space with initial velocity $(\vec{v}_i = 20 \text{ km/s})$ relative to the sun. It ejects a rear stage of mass (0.2 M) with speed $(\vec{u} = 5 \text{ km/s})$, find the final velocity \vec{v}_f of the space ship after ejection.

Solution:

The system of spaceship plus rear stage is a closed system upon which no external forces act; the total linear momentum is conserved.

$$\Delta \vec{P} = \vec{P_f} - \vec{P_i} = 0$$
 نظام سفينة الفضاء اضافة الى المرحلة الخلفية هو نظام مغلق ليس عليه وي خارجية ؛ عليه يكون الزخم الخطي الكلي محفوظ

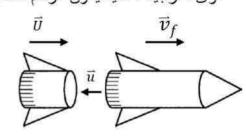
$$\therefore \vec{P}_f = \vec{P}_i \dots \dots (1)$$

 $\vec{P_i} = \text{initial linear momentum}$

 \vec{P}_f = final linear momentum

Let U be the velocity of the rear stage after ejection.

$$\vec{P}_i = M\vec{v}_i \dots \dots (2)$$



The total momentum of the system after ejection is then:

$$\vec{P}_f = 0.2M \, \vec{U} + 0.8 \, M \vec{v}_f \dots (3)$$
 $\vec{u} = \vec{v}_f - \vec{U}$
 $\vec{U} = \vec{v}_f - \vec{u} \dots (4)$
Sub. Eqn. (4) in Eqn. (3)
 $\vec{P}_f = 0.2M(\vec{v}_f - \vec{u}) + 0.8 \, M \vec{v}_f \dots (5)$
Eqn. (5) equal Eqn.(2), so:
$$\left[0.2M(\vec{v}_f - \vec{u}) + 0.8 \, M \vec{v}_f = M \, \vec{v}_i \, \right] \div M$$

$$0.2\vec{v}_f + 0.8\vec{v}_f = \vec{v}_i + 0.2\vec{u}$$

$$\vec{v}_f = \vec{v}_i + 0.2 \, \vec{u}$$

$$= 20 \, km/s + 0.2(5 \, km/s)$$

$$\vec{v}_f = 21 \, km/s$$

2.5 Rectilinear Motion

When a moving particle remains on a *single straight line*, the motion is said to be "rectilinear". The general equation motion is:

$$\vec{F}\left(x,\dot{x},t
ight)=m\ddot{x}=m\ddot{a}$$
 عندما يستمر الجسم في حركته على خط مستقيم واحد، يُقال إن الحركة "مستقيمة"

Note: We usually use the single variable x to represent the position of a particle. To avoid unnecessary use of subscripts, we often use the symbols v, a, \dot{x}, \ddot{x} and F respectively, rather than $v_x, a_x, \dot{x}_x, \ddot{x}_x$ and F_x .

Special Cases:

1. Constant Force

$$\vec{F} = constant \ then \ \vec{a} = constant$$

$$\therefore \vec{F} = m \frac{d\vec{v}}{dt} \rightarrow \frac{d\vec{v}}{dt} = \frac{\vec{F}}{m} = \vec{a} = constant \dots (1)$$

$$m\ddot{x} = m\vec{a}$$

$$\vec{F} = \ddot{x} = \frac{d\vec{v}}{dt} = \vec{a}$$

$$d\vec{v} = \vec{a}dt$$

$$\int_{u_0}^{u} d\vec{v} = \int_{0}^{t} \vec{a} dt
v - v_0 = at v_0 \equiv \text{Initial velocity}
\vec{v} = at + v_0(2)
$$\therefore \vec{v} = \frac{dx}{dt}
\therefore \frac{dx}{dt} = at + v_0
\int_{x_0}^{x} dx = \int_{0}^{t} (at + v_0) dt
x - x_0 = \frac{1}{2}at^2 + v_0t
x = \frac{1}{2}at^2 + v_0t + x_0(3)
at = v - v_0
$$\therefore t = \frac{v - v_0}{a}(4)
x - x_0 = \frac{1}{2}a\left(\frac{v - v_0}{a}\right)^2 + v_0\left(\frac{v - v_0}{a}\right)
2a(x - x_0) = a^2\left(\frac{v - v^2}{a}\right)^2 + 2v_0(v - v_0)
2a(x - x_0) = v^2 + v_0^2 - 2vv_0 + 2vv_0 - 2v_0^2
2a(x - x_0) = v^2 - v_0^2(5)$$$$$$

The equations of uniformly accelerated motion

$$\vec{v} = at + v_0$$

$$x = \frac{1}{2} at^2 + v_0 t + x_0$$

$$2a (x - x_0) = v^2 - v_0^2$$

2. Free Fall

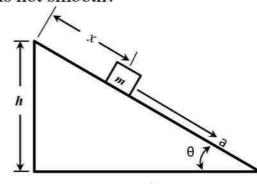
In the case of a body *falling freely* near the surface of the Earth, neglecting air resistance, the acceleration is very nearly constant

$$a=g=9.8 \ \frac{m}{sec^2}=32 \ ft / sec^2$$
 في حالة السقوط الحر لجسم ما بالقرب من سطح ولم المقومة المهواء، يكون التعجيل ثابتًا $\vec{F}=m\vec{g}$

Example:

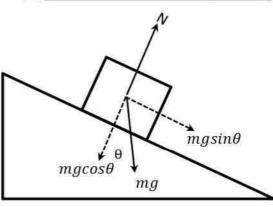
A block is sliding down on a smooth plane inclined at angle θ to horizontal. If the height of the plane is h as shown in the figure and the block is released from rest $(v_0 = 0)$ at the top, what will be its speed when it reaches the bottom? Then how the accelerate will become when surface is not smooth?

جسم ينزلق اسفل سطح املس يميل بزاوية θ عن الافق. اذا كان ارتفاع السطح هو h كما هو موضح في الشكل وتم تحرير الجسم من السكون في الأعلى ، ما هي سرعته عندما يصل إلى اسفل السطح؟ وكم سيصبح تعجيله اذا كان السطح خشن



Solution:

a) Smooth plane (No Frictional force)



Using one of the equation of motion $(2a(x-x_0) = (v^2 - v_0^2))$

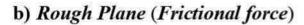
where
$$v_0 = 0$$

$$v^2 = 2a(x - x_0) \dots (3)$$

$$v^2 = 2(g\sin\theta) \left(\frac{h}{\sin\theta}\right)$$

$$\therefore v^2 = 2gh$$

$$v = \sqrt{2gh} \dots (4)$$



$$\vec{F} = mg \sin \theta - f \dots \dots (5)$$

$$\vec{f} \alpha \vec{N}$$

$$\vec{f} = \mu \vec{N}$$

 $mg cos \theta$ mg $mg sin \theta$

N: normal force, μ : coefficient of sliding or kinetic friction

From figure:

$$N = mg\cos\theta$$

$$\therefore f = \mu mg \cos \theta \qquad \dots \dots (6)$$

$$\vec{F} = m\vec{a} = mg\sin\theta - \mu mg\cos\theta$$

$$\vec{a} = g \left(\sin \theta - \mu \cos \theta \right)$$

For motion up the plane, the direction of the frictional force is reversed; that is, it is in the positive x direction. The acceleration (actually *deceleration*) is then:

$$\vec{a} = g(\sin\theta + \mu\cos\theta)$$

2.6 Forces that Depend on Position

(The Concepts of Kinetic and Potential Energy)

- مفهوم الطاقة الحركية والطاقة الكامنة
- Force depends only on the particles position
- قوة تعتمد على موضع الجسيمات فقط
- · Electrostatic and gravitational forces.

- القوى الكهروستاتيكية والجاذبية.
- · Forces of elastic tension or compression.

• قوى التوتر المرن أو الضغط.

If the force is *independent of velocity or time*, then the differential equation for rectilinear motion is simply:

$$\vec{F}(x) = m\ddot{x} \qquad \dots \dots (1)$$

Using the chain rule

$$\therefore \ddot{x} = \frac{d\dot{x}}{dt} = \frac{d\dot{x}}{dt} \frac{dx}{dx} = \frac{dx}{dt} \frac{d\dot{x}}{dx}$$

$$\therefore \ddot{x} = v \frac{dv}{dx} \qquad \dots \dots (2)$$

Sub. Eqn. (2) in Eqn. (1)

$$\therefore F(x) = mv \frac{dv}{dx} \qquad \dots \dots (3)$$

Also, Eqn.(3) may be written as:

$$\vec{F}(x) = \frac{m}{2} \frac{d(v^2)}{dx}$$

$$\vec{F}(x) = \frac{dT}{dx}$$
(4)

where $\left[T = \frac{1}{2} mv^2\right] \rightarrow$ Kinetic energy of the particle

$$F(x)dx = dT$$

$$\int_{x_0}^{x} F(x)dx = \int_{T_0}^{T} dT = T_x - T_0 = W \dots (5)$$

The work is equal to the change in the kinetic energy of the particle.

Let us define a function V(x) such that

$$F(x) = -\frac{dV}{dx}$$

$$\int_{x_0}^{x} F(x) dx = -V + constant \dots (6)$$

V: Potential energy.

The function V(x) is called the potential energy in terms of (x), the work integral is

$$W = \int_{x_0}^{x} f(x) dx = -\int_{x_0}^{x} dV = -V(x) + V(x_0) = T - T_0$$

$$-V + costant = T$$

$$T + V = costant$$

$$\frac{1}{2} mv^2 + V(x) = costant = E \quad(7)$$
Total energy equation

Total energy (total mechanical energy) it is equal to the sum of the kinetic and potential energies and is constant throughout the motion of the particle.

Such force (depend on position only) called *Conservative force*. *Nonconservative forces* that is, those for which no potential energy function exists are usually of a dissipational nature, such as friction.

(Free Fall) (Constant acceleration) is an example of conservative motion.

إجمالي الطاقة يساوي مجموع الطاقات الحركية والاحتمالية وهو ألبت طوال حركة الجسيم. ان هذه القوة (تعتمد على الموضع فقط)
$$\frac{1}{2}$$
 $mv^2 + V(x) = E$ $\frac{1}{2}$ $mv^2 = E - V(x)$ * $\frac{2}{m}$ $\frac{1}{2}$ $mv^2 = E - V(x)$ * $\frac{2}{m}$ $\frac{2}{m}$ $\frac{1}{2}$ $mv^2 = \frac{2}{m}[E - V(x)]$ * $\frac{2}{m}$ $\frac{2}{m}[E - V(x)]$ * $\frac{2}{m}$ $\frac{2}{m}$ $\frac{2}{m}[E - V(x)]$ * $\frac{2}{m}$ \frac

$$t = \int_{x_0}^{x} \frac{\mp dx}{\sqrt{\frac{2}{m}[E-V(x)]}} \dots (9) \quad Equation \ of \ time \ (t) \ as \ a \ function \ of \ (x)$$

Note that:

- **1.** When $V(x) \leq E \rightarrow The \ velocity(v)$ is real
- **2.** When $V(x) = E \rightarrow The \ velocity(v) = 0$ This means that the particle must come to rest and reverse its motion at points for which the equality holds. These points are called the *turning* points of the motion.
- 3. When $V(x) \ge E \rightarrow The \ velocity(v)$ is imaginary
 - تكون السرعة (v) حقيقية في حالة كون V(x) اقل او مساوية للطاقة الكلية للجسم.
- تكون السرعة مساوية للصفر في حالة كون V(x) مساوية للطاقة الكلية وهذا يعني أن الجسيم يجب أن يقف ويعكس حركته عند نقاط تحمل المساواة فيها. وتسمى هذه النقاط تسمى نقاط الرجوع للحركة.
 - تكون السرعة ذات قيمة خيالية في حالة كون V(x) مساوية للطاقة الكلية للجسم.

At x = max $\dot{x} = ?$

Example: (Free Fall)

A body is projected upward in the positive x-direction with initial speed (v_0) . choosing x = 0 as initial point of projection, find the maximum height attained by the body and then find the equation of time (t) in terms of (g)

Solution:

Choose the x direction to be positive upward, and then the gravitational force is equal to (-mg). At x = 0 $\dot{x} = v_0$

$$F = -mg \dots (1)$$

$$F = -\frac{dV(x)}{dx}$$

$$\therefore \int F(x)dx = -V + c \dots (2)$$

$$\therefore \int F(x)dx = -V + c \qquad \dots \dots (2)$$

Sub Eqn. (1) in Eqn. (2)

$$\therefore \int -mg \, dx = -V + c$$
 choose $c = 0$
$$-mgx = -V + c$$
 then $V = 0$ at $x = 0$

$$\therefore V = mgx \dots (3) \qquad \textbf{Potential energy}$$

$$E = \frac{1}{2} mv^2 + V \dots (4)$$

Sub Eqn. (3) in Eqn. (4)

$$\therefore E = \frac{1}{2}mv^2 + mgx \qquad \dots \dots (5)$$

The body be projected upward with *initial speed* v_0 from the *origin* x = 0

$$E = \frac{1}{2}mv_0^2 + mg(0)$$

$$\therefore E = \frac{1}{2} m v_0^2 \dots \dots (6)$$

Energy equation during body motion

The *turning point* of the motion, which is in this case the maximum height $(X = X_{max})$, is given by setting v = 0.

نقطة الرجوع في الحركة، تكون في هذه الحالة عند أقصى ارتفاع
$$0=v_0^2-2gX_{max}$$

$$\frac{1}{2}\ m\ v_0^2=mgX_{max}$$

 $\therefore X_{max} = \frac{v_0^2}{2g}$ \rightarrow The maximum height that the body attained

To obtain time (t) from Eqn. (8)

$$v^{2} = v_{0}^{2} - 2gx$$

$$v^{2} = \left(\frac{dx}{dt}\right)^{2} = v_{0}^{2} - 2gx$$

$$\frac{dx^{2}}{dt^{2}} = v_{0}^{2} - 2gx$$

$$dt^{2} = \frac{dx^{2}}{v_{0}^{2} - 2gx}$$

$$dt^{2} = (v_{0}^{2} - 2gx)^{-1}dx^{2}$$

$$dt = (v_{0}^{2} - 2gx)^{-1/2}dx$$

By integration two side:

$$\int_0^t dt = \int_0^x (v_0^2 - 2gx)^{-1/2} dx$$

$$t = -\frac{2(v_0^2 - 2gx)^{1/2}}{2g} \Big|_0^x = -\frac{(v_0^2 - 2gx)^{1/2}}{g} + \frac{v_0}{g}$$

$$t = \frac{v_0}{g} - \frac{(v_0^2 - 2gx)^{1/2}}{g}$$

2.7 Variation of Gravity with Height

We assumed that g was constant. Actually, the force of gravity between two particles is inversely proportional to the square of the distance between them (Newton's law of gravity). The gravitational force that the Earth exerts on a body of mass m is given by:

افترضنا أن
$$g$$
 ثابت في الواقع، إن قوة الجاذبية بين جسمين g ثابت عكسيا مع مربع المسافة بينهما (قانون الجنب العام $F_r = -G\frac{Mm}{m^2}$ (1)

Where G: is Newton's constant of gravitation

M: is the mass of the Earth

r: is the distance from the center of the Earth to the body.

We know that there is a relation between the force and potential energy:

$$F = -\frac{\partial V}{\partial r} \to \partial V = -F\partial r \to dV = -Fdr \to F$$

$$\int dV = -\int -\frac{GMm}{r^2} dr$$

$$V(r) = GMm\left(\frac{r^{-2+1}}{-1}\right)$$

$$V(r) = -\frac{GMm}{r} \dots (2)$$
Potential Energy function

If we neglect air resistance, the differential equation of motion is:

$$m\ddot{r} = -G\frac{Mm}{r^2}$$
(3)
$$\ddot{r} = \frac{d\dot{r}}{dt} + \frac{dr}{dr}$$

$$\ddot{r} = \frac{d\dot{r}}{dt}\frac{dr}{dr} = \frac{d\dot{r}}{dr}\frac{dr}{dt}$$

$$\dot{r} = \dot{r}\frac{d\dot{r}}{dr} - \dots \dots (4)$$
Sub. Eqn. (4) in Eqn.(3)
$$m\dot{r}\frac{d\dot{r}}{dr} = -G\frac{Mm}{r^2}$$

Integrating both side with respect \dot{r} and r

$$m \int \dot{r} d\dot{r} = -GMm \int \frac{dr}{r^2}$$

$$m \int \dot{r} d\dot{r} = -GMm \int r^{-2} dr$$

$$\frac{1}{2}m\dot{r}^{2} = -\frac{GMm}{-1} r^{-2+1} = GMmr^{-1} + c$$

$$\frac{1}{2}m\dot{r}^{2} = \frac{GMm}{r} + c$$

$$\frac{1}{2}m\dot{r}^{2} = \frac{GMm}{r} + c \dots \dots (5)$$

c = E is constant of integration.

$$\therefore \frac{1}{2}m\dot{r}^2 - \frac{GMm}{r} = E \dots (6)$$
 Free Falling Energy equation

Eqn. (6) is energy equation, represent the sum of the kinetic energy (1st term) and the potential energy (2nd term) remain constant throughout the motion of a falling body.

(الحد الأول) تمثل معادلة الطاقة، وتمثل مجموع الطاقة الحركية (الحد الأول) والتي تبقى ثابتة طوال حركة الجسم الساقط.

When the projectile shot upward from the surface of the earth with initial speed v_0 :

$$\frac{1}{2}mv_0^2 - \frac{GMm}{r_0} = E \dots (7)$$

Where r_e is the radius of the earth

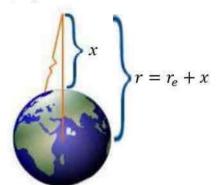
Now, in order to find the speed of the projectile at any height x above the earth's surface, combining the last two energy equations (6) and (7):

(7) و (3) الأن، لايجاد سرعة القذيفة في أي ارتفاع
$$x$$
 فوق سطح الأرض، نجمع المعادلتين الأخيرتين للطاقة

$$\frac{1}{2}m\dot{r}^2 - \frac{GMm}{r} = \frac{1}{2}mv_0^2 - \frac{GMm}{r_e}$$

$$\frac{1}{2}mv_0^2 - \frac{1}{2}m\dot{r}^2 + \frac{GMm}{r} - \frac{GMm}{r_e} = 0$$

$$\frac{1}{2}m(v_0^2 - \dot{r}^2) + GMm(\frac{1}{r} - \frac{1}{r_e}) = 0$$



Substituting by $(v = \dot{r})$, then multiply the Eqn. by $(\frac{2}{m})$, we get:

$$(v_0^2 - v^2) + 2GM\left(\frac{1}{r} - \frac{1}{r_e}\right) = 0$$

$$v^2 = v_0^2 + 2GM\left(\frac{1}{r} - \frac{1}{r_e}\right)$$
But $r = r_e + x$

$$v^2 = v_0^2 + 2GM\left(\frac{1}{r_e+x} - \frac{1}{r_e}\right)....(8)$$
 Speed at any height above the earth surface

Now the equation of gravity acceleration for the projectile on the earth's surface is given: (gravitational force equal to weight of body)

$$-\frac{GMm}{r_e^2} = -mg$$
 $g = \frac{GM}{r_e^2}$ (9)
 $G = \frac{gr_e^2}{M}$ (10)

Sub. Eqn. (10) in Eqn. (8)

$$v^{2} = v_{0}^{2} + \frac{2Mgr_{e}^{2}}{M} \left(\frac{1}{r_{e}+x} - \frac{1}{r_{e}} \right)$$

$$v^{2} = v_{0}^{2} + 2gr_{e}^{2} \left(\frac{r_{e}-(r_{e}+x)}{r_{e}(r_{e}+x)} \right)$$

$$v^{2} = v_{0}^{2} + 2gr_{e}^{2} \left(\frac{r_{e}-r_{e}-x}{r_{e}(r_{e}+x)} \right)$$

$$v^{2} = v_{0}^{2} + 2gr_{e}^{2} \left(\frac{-x}{r_{e}(r_{e}+x)} \right)$$

$$v^{2} = v_{0}^{2} + 2gr_{e}^{2} \left(\frac{-x}{r_{e}(r_{e}+x)} \right)$$

$$v^{2} = v_{0}^{2} - 2gx \left(\frac{r_{e}^{2}}{r_{e}(r_{e}+x)} \right)$$

$$v^{2} = v_{0}^{2} - 2gx \left(\frac{r_{e}}{r_{e}+x} \right)$$

$$v^{2} = v_{0}^{2} - 2gx \left(\frac{r_{e}}{r_{e}+x} \right)$$

 $v^2 = v_0^2 - 2gx(1 + \frac{x}{r_e})^{-1}$(11) Speed of projectile with variant gravity acceleration

When $x \ll re \rightarrow \left(\frac{x}{r_e}\right)$ can be neglected, then Eqn. (11) reduces to the form:

 $v^2 = v_0^2 - 2gx$ (12) Speed of projectile with uniform gravitational field

The *maximum height* (turning point) is found by setting v = 0 and solving for x = 0. $v_0^2 - 2gx_{max}(1 + \frac{x_{max}}{r_e})^{-1}$

$$v_0^2 = 2gx_{max}(1 + \frac{x_{max}}{r_e})^{-1}$$

$$x_{max} = \frac{v_0^2}{2g} (1 + \frac{x_{max}}{r_e})$$

$$x_{max} = \frac{v_0^2}{2g} + \frac{v_0^2}{2g} \frac{x_{max}}{r_e}$$

$$x_{max} - \frac{v_0^2}{2g} \frac{x_{max}}{r_e} = \frac{v_0^2}{2g}$$

$$x_{max}(1 - \frac{v_0^2}{2gr_e}) = \frac{v_0^2}{2g}$$

$$x_{max} = \frac{v_0^2}{2a} \left(1 - \frac{v_0^2}{2ar_e} \right)^{-1} \dots (13)$$
 Maximum height of the projectile

Again, if $v_0^2 \ll 2gr_e \rightarrow \frac{v_0^2}{2gr_e}$ can be neglected

$$x_{max} = h = \frac{v_0^2}{2g}$$
.....(14) Maximum height of the projectile with low initial speed

To find v_0 that make the projectile escape from the earth's gravity, which is called *escape speed*, we need to expand the series in Eqn. (13), by using binomial, as in:

لايجاد v_0 التي تجعل الجسم المقذوف يهرب من جاذبية الأرض، والتي تسمى سرعة الهروب، نحتاج إلى ايجاد مفكوك المتسلسلة في معادلة (13)، باستخدام متعدد الحدود.

$$(1 - \frac{v_0^2}{2gr_e})^{-1} = \left(1 - \frac{v_0^2}{2gr_e} + \left(\frac{v_0^2}{2gr_e}\right)^2 - \cdots\right)$$

Sub. in Eqn. (13)

$$x_{max} = h = \frac{v_0^2}{2g} \left(1 - \frac{v_0^2}{2gr_e} + \left(\frac{v_0^2}{2gr_e} \right)^2 - \dots \right)$$

$$x_{max} = h = \frac{v_0^2}{2g} - \left(\frac{v_0^2}{2g}\right)^2 \frac{1}{r_e} + \left(\frac{v_0^2}{2g}\right)^3 \frac{1}{r_e^2} + \cdots$$

Neglecting high terms

$$x_{max} = h = \frac{v_0^2}{2g}$$

$$v_0^2 = 2gh$$

$$v_0 = \sqrt{2gh}$$

$$h = x_{max} = r_e = 6.4 \times 10^6 m$$
 and $g = 9.8 \,\text{m/s}^2$

$$v_e = \sqrt{2g r_e} \cong 11 \text{km/s}$$
(15) Escape velocity

In the *Earth's atmosphere*, the average speed of air molecules (O_2 and N_2) is about 0.5 km/s, which is considerably less than the escape speed, so the Earth retains its atmosphere. The *moon*, has no atmosphere; because the escape speed at the moon's surface, owing to the moon's small mass, is considerably smaller than that at the Earth's surface, any oxygen or nitrogen would eventually disappear.

في الغلاف الجوي للأرض ، يبلغ متوسط سرعة جزيئات الهواء (O_2 و O_2) حوالي O_3 كم / ثانية ، وهو أقل بكثير من سرعة الهروب، لذلك تحتفظ الأرض بجوها. القمر ليس له جو، لأن سرعة الهروب عند سطح القمر ، بسبب كتلة القمر الصغيرة، أصغر بكثير من سرعة الهروب عند سطح الأرض، فإن أي أوكسجين أو نيتروجين سيختفي في النهاية.

2.8 The Force as a Function of Velocity Only

(Horizontal Motion with Liner Resistance)

It often happens that the force that acts on a body is a function of the velocity of the body. This is true, for example, in the case of viscous resistance exerted on a body moving through a fluid. If the force can be expressed as a function of v only, the differential equation of motion may be written in either of the two forms

غالبا ما يحدث أن القوة المؤثرة على الجسم هي دالة لسرعة الجسم. هذا صحيح، على سبيل المثال، في حالة مقاومة اللزوجة التي تؤثر على الجسم المتحرك عبر مائع. إذا أمكن التعبير عن القوة كدالة للسرعة فقط، فيمكن كتابة المعادلة التفاضلية للحركة في صيغيتين

$$F_0 + F(v) = m \frac{dv}{dt} \dots (1)$$

 F_0 = is constant force that **dose not depend on v**

$$mdv = F(v)dt$$

$$dt = \frac{m \, dv}{F(v)}$$

By integrating both sides:

$$dt = \int \frac{m \, dv}{F(v)} \Longrightarrow t \to t(v) \dots \dots (2)$$

Assuming that we can solve the above Eqn. for (v)

$$(v) = v(t)$$

Second integration: $\int v(t)dt = x(t)$

$$\frac{dv}{dt} = \frac{dv}{dx}\frac{dx}{dt} = v\frac{dv}{dx}$$
Sub. in Eqn. (1)
$$F_0 + F(v) = mv\frac{dv}{dx}$$

$$dx = \frac{mv\,dv}{F(v)}$$

$$x = \int \frac{mv\,dv}{F(v)} = x(v) \qquad \dots (3) \text{ Position as function of } (v)$$

Example: (Horizontal Motion with Liner Resistance)

A block is projected with initial velocity (v_0) on a smooth horizontal plane, but it was affected by air resistance proportional of (v) i.e. F(v) = -cv. Find the equation of time (t) as a function of (v), then find the equation of velocity and displacement as a function of (t).

Solution:

$$F = -cv \dots (1)$$

$$F = m \frac{dv}{dt} \dots (2)$$

$$-cv = m \frac{dv}{dt}$$

$$dt = -\frac{m}{c} \frac{dv}{v}$$
By integrating both

By integrating both sides

$$\int_0^t dt = -\frac{m}{c} \int_{v_0}^v \frac{dv}{v}$$

$$t = -\frac{m}{c} \ln v \Big]_{v_0}^v = -\frac{m}{c} (\ln v - \ln v_0)$$

$$t = -\frac{m}{c} \ln \left(\frac{v}{v_0}\right) \dots (3) \quad Equation \text{ of time as a function of } (v)$$

Multiplying by $\left(\frac{-c}{m}\right)$

$$\frac{-c t}{m} = \ln \frac{v}{v_0}$$
$$e^{\frac{-c t}{m}} = \frac{v}{v_0}$$

$$v = v_0 e^{\frac{-ct}{m}}$$
 (4) Velocity as a function of (t)

$$v = \frac{dx}{dt}$$

$$\therefore \frac{dx}{dt} = v_0 e^{\frac{-ct}{m}}$$

$$\int_0^x dx = \int_0^x v_0 e^{\frac{-ct}{m}} dt \dots (5)$$

$$x = \int_0^t v_0 e^{\frac{-ct}{m}} dt * \frac{\frac{c}{m}}{\frac{c}{m}}$$

$$x = -\frac{m v_0}{c} \int_0^t \frac{-c}{m} e^{\frac{-ct}{m}} dt$$

$$x = -\frac{m v_0}{c} e^{\frac{-ct}{m}} \Big|_0^t$$

$$x = -\frac{m v_0}{c} e^{\frac{-ct}{m}} + \frac{m v_0}{c} e^{\frac{-c(o)}{m}}$$

$$x = \frac{m v_0}{c} \left(1 - e^{\frac{-ct}{m}}\right) \dots (6) \quad \textbf{Displacement as a function of (t)}$$

Example:

If F = -cv find the velocity and time equations as a function of displacement for a particle with initial velocity v_0 .

Solution:

$$F = -cv \qquad \text{and} \qquad F = mv \frac{dv}{dx}$$

$$-cv = mv \frac{dv}{dx}$$

$$-\frac{c}{m} \int_0^x dx = \int_{v_0}^v dv$$

$$-\frac{c}{m} x = v - v_0$$

$$v = v_0 - \frac{c}{m} x \quad(7) \qquad \textit{Velocity as a function of } (x)$$

[The speed of the body varies linearly with the displacement (distance)]

$$\begin{array}{ll} \therefore \, v = \frac{dx}{dt} \\ \vdots \, \frac{dx}{dt} = v_0 - \frac{c}{m}x \\ \vdots \, \frac{dx}{dt} = v_0 - \frac{c}{m}x \\ \vdots \, \frac{dv}{dt} = \int_0^x \frac{dx}{v_0 - \frac{c}{m}x} * \frac{-\frac{c}{m}}{-\frac{c}{m}} \\ \vdots \, \frac{dv}{v} = \ln v \\ \vdots \, \int \frac{dv}{v} = \int \frac{-\frac{c}{m}dx}{v_0 - \frac{c}{m}x} = \ln \left[v_0 - \left(\frac{c}{m}\right)x\right] \end{array}$$

$$t = \int_0^x \frac{-\frac{c}{m} dx}{-\frac{c}{m} [v_0 - \left(\frac{c}{m}\right) x]}$$

$$t = -\frac{m}{c} \ln\left(v_0 - \left(\frac{c}{m}\right) x\right) \Big|_0^x$$

$$t = \frac{-m}{c} \left[\ln\left(v_0 - \left(\frac{c}{m}\right) x\right) - \ln v_0\right]$$

$$t = -\frac{m}{c} \ln\left[\frac{v_0 - \left(\frac{c}{m}\right) x}{v_0}\right] \qquad \text{(time as a function of } (x)\text{)}$$

2.9 The Force as a Function of Time Only

$$F(t) = m \frac{dv}{dt}$$

$$dv = \frac{F(t)}{m} dt$$
By integrating
$$v(t) = \int \frac{F(t)}{m} dt \dots \dots (1)$$

$$v(t) = \frac{dx}{dt}$$

$$dx = v(t) dt$$

$$\int dx = \int v(t) dt \dots \dots (2)$$
Sub Eqn. (1) in (2)
$$x = \int \left[\int \frac{F(t)}{m} dt\right] dt \dots \dots (3)$$

Example:

A block is initially at rest on a smooth horizontal surface. At time (t = 0) a constant increasing horizontal force is applied F = ct. Find the velocity and displacement as a function of time.

Solution:

$$F = ct = m\frac{dv}{dt}$$
$$dv = \frac{1}{m}ct dt$$
$$v = \frac{1}{m} \int_0^t ct dt$$
$$v = \frac{ct^2}{2m}$$

$$v = \frac{dx}{dt}$$

$$\frac{dx}{dt} = \frac{ct^2}{2m}$$

$$dx = \frac{ct^2}{2m}dt$$

$$x = \int_0^t \frac{ct^2}{2m}dt$$

$$x = \frac{ct^3}{6m}$$

2.10 Vertical Motion in a Resisting Medium Terminal Velocity

Linear Resistance

An object falling vertically through the air or through any fluid is subject to viscous resistance. If the resistance is proportional to the first power of (v), we can express this force as $(-c\vec{v})$ regardless of the sign of (v) because the resistance is always opposite to the direction of motion. The constant of proportionality c depends on the size and shape of the object and the viscosity of the fluid.

يتعرض الجسم الذي يسقط رأسياً عبر الهواء أو من خلال أي مائع لمقاومة اللزوجة. إذا كانت المقاومة تتناسب مع القوة الأولى لـ (v) (الحالة الخطية)، فيمكننا التعبير عن هذه القوة كـ $(-c\vec{v})$ بغض النظر عن اشارة (v)لأن المقاومة تكون دائمًا معاكسة لاتجاه الحركة. ثابت التناسب v يعتمد على حجم وشكل الجسم ولزوجة المائع.

Let us take the x axis to be **positive** upward. The differential equation of motion is then

$$-mg - c\vec{v} = m\frac{d\vec{v}}{dt} \dots \dots (1) \qquad \textbf{Linear Equation}$$

$$\int_0^t dt = \int_{v_0}^v \frac{mdv}{-mg - cv}$$

$$\frac{t}{m} = \int_{v_0}^v \frac{dv}{-mg - cv} = -\int_{v_0}^v \frac{dv}{(mg + cv)}$$

$$\frac{t}{m} = -\int_{v_0}^v \frac{dv}{mg + cv}$$

$$\frac{t}{m} = -\frac{1}{c_1} \ln(mg + cv) \right]_{v_0}^v$$

$$\frac{t}{m} = -\frac{1}{c_1} [\ln(mg + cv) - \ln(mg + v_0)]$$

$$\therefore t = -\frac{m}{c} \ln \left(\frac{mg + cv}{ma + cv_0} \right) \dots \dots (2) \qquad Equation of Time$$

Eqn. (2) represents time in term of velocity; by solve Eqn. (2)

$$e^{\frac{-ct}{m}} = \frac{mg + cv}{mg + cv_0}$$

$$mg + cv = (mg + cv_0)e^{\frac{-ct}{m}}$$

$$cv = -mg + mg e^{\frac{-ct}{m}} + cv_0 e^{\frac{-ct}{m}} \quad] \div c$$

$$\therefore v = -\frac{mg}{c} + \frac{mg}{c} e^{\frac{-ct}{m}} + v_0 e^{\frac{-ct}{m}}$$

$$\therefore v = -\frac{mg}{c} + \left(\frac{mg}{c} + v_0\right) e^{\frac{-ct}{m}} \dots (3) \quad \text{Velocity as function of time}$$

Eqn. (3) represents velocity in term of time.

When
$$\left(t \gg \frac{m}{c}\right)$$
 then $e^{\frac{-ct}{m}} = 0$ so, the exponential term can be neglected $v = -\frac{mg}{c}$ (4) *Terminal velocity*

Terminal velocity: It is that velocity at which the force resistance is just equal and opposite to the weight of the body so that the total force on the body is zero and so the acceleration is zero.

سرعة المنتهى: هي تلك السرعة التي تكون فيها مقاومة القوة مساوية تماما ومعاكسة لوزن الجسم بحيث تكون القوة الكلية على الجسم تساوي الصفر وبالتالي فإن التعجيل سيكون صفر.

$$rac{mg}{c} = v_t$$
 Terminal speed سرعة المنتهى $au = rac{m}{c}$ Characteristic time

Then Eqn. (3) becomes:

$$v = -v_t + (v_t + v_0)e^{-t/\tau}$$
(4) Velocity in term of terminal velocity

These two terms represent two velocities; the terminal velocity v_t which exponentially (fades in) and the initial velocity v_0 which exponentially (fades out) due to the action of the viscous drag force.

هذان الحدان يمثلان سرعتين. سرعة المنتهى v_t التي تتلاشى أسياً والسرعة الأبتدائية v_0 التي تتلاشى أسياً بسبب تأثير قوة اللزوجة.

We can find displacement by integrate Eqn. (3)

$$x - x_0 = -\frac{mg}{c}t + \left(\frac{m^2g}{c^2} + \frac{mv_0}{c}\right)\left(1 - e^{\frac{-ct}{m}}\right) \dots (5)$$
 Displacement Equation

Also, write in the form

$$x = x_0 - v_t t + X_1 \left(1 - e^{\frac{-ct}{m}} \right) \dots \dots (6)$$
where $X_1 = \frac{m^2 g}{c^2} + \frac{m v_0}{c} = g \tau^2 + v_0 \tau$

In particular, for an object dropped from rest $v_0 = 0$,

From Eqn. (4)

$$v = -v_t + (v_t + v_0)e^{-t/\tau} = -v_t + v_t e^{-t/\tau}$$

• When
$$(t = \tau)$$

$$v = (1 - e^{-t/\tau})v_t$$

$$v = (1 - e^{-1})v_t$$

$$\therefore When (t = \tau) \rightarrow v = (1 - e^{-1})vt$$

• When
$$t = 2\tau$$

$$v = (1 - e^{-2\tau/\tau})v_t$$

$$v = (1 - e^{-2})v_t$$

: when
$$(t = 2\tau) \to v = (1 - e^{-2})v_t$$

Thus, after one characteristic time the speed is $(1 - e^{-1})$ times the terminal speed, after two characteristic times it is the factor $(1 - e^{-2})$ of and so on. After an interval of the speed is within 1% of the terminal value, namely, $(1 - e^{-5})v_t = 0.99995 v_t$

وبالتالي اذا اسقط جسم من السكون فبعد زمن نوعي واحد، تكون السرعة $(1-e^{-1})$ أضعاف سرعة المنتهى ، وبعد ضعفين للزمن النوعي تكون سرعته $(1-e^{-2})$ هكذا. بعد فترة زمنية تصل سرعة الجسم في حدود 1 $v_t=0.99995$ من قيمة سرعة المنتهى ، أي $v_t=0.99995$

3.1 Introduction

Everywhere around us we see systems engaged in a *periodic motion*: the small oscillations of a pendulum clock, a child playing on a swing, the rise and fall of the tides, the swaying of a tree in the wind and the vibrations of the strings on a violin. The essential feature that all these phenomena have in common is *periodicity*, a pattern of movement or displacement that repeats itself over and over again.

في كل مكان حولنا نرى أنظمة تعمل بحركة دورية: التذبذبات الصغيرة لساعة البندول و تأرجح الطفل وهو يلعب على أرجوحة وصعود وانحدار المد والجزر وتمايل الاشجار في الريح واهتزازات أوتار الكمان. الميزة الأساسية التي تشترك فيها كل هذه الظواهر هي الدورية، والتي هي نمط من الحركة أو الازاحة الذي يعيد نفسه مرارًا وتكرارًا.

3.2 Linear Restoring Force, Harmonic Motion

One of the most important cases of rectilinear motion is that produced by a *linear restoring force*. This force whose magnitude is **proportional** to the **displacement** of the particle from the **equilibrium position** and whose **direction** is always **opposite** to that of the displacement. Such a force is exerted by a spring obeying Hooke's law.

واحدة من أهم حالات الحركة على خط مستقيم تلك التي تحدثها قوة معيدة خطية. هذه القوة التي يتناسب مقدار ها مع إزاحة الجسم من موضع التوازن اتجاهها يكون دائماً عكس اتجاه الازاحة. قوة كهذه يسببها وتر أو نابض يخضع لقانون هوك.

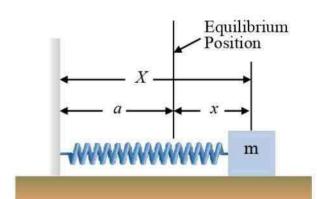
$$x = X - a \dots (1)$$

Eq. (1) represents the displacement of the spring from its equilibrium length.

X is total length

a is upstretched (zero) length of the spring

Elastic force exerted by a spring obeying



Hooke's law

$$F \alpha - x$$

$$F = -kx$$
(2) Restoring Force (Hooke's law)

where k is called Stiffness (Spring Constant)

معامل المرونة

Sub. Eq.(1) in Eq.(2)

$$\therefore F = -k(X - a) \dots (3)$$

Let the same spring be held vertically. The total force acting on the particle is:

$$F = -kx$$

$$F = -k(X - a) + mg \dots (4)$$

where the positive direction is downward:

$$x = X - \left(a + \frac{mg}{k}\right)$$

 $\frac{mg}{k}$ is the change in displacement due to body weight.

$$\therefore x = X - a - \frac{mg}{k}$$

$$X - a = x + \frac{mg}{k} \dots \dots (5)$$

Sub. Eq. (5) in Eq. (4)

$$\therefore F = -k\left(x + \frac{mg}{k}\right) + mg$$

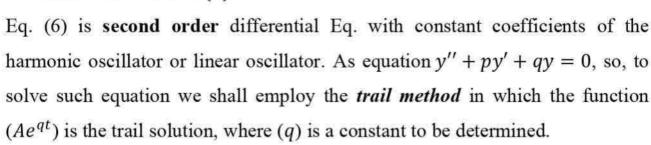
$$F = -kx - \frac{kmg}{k} + mg$$

This give again:

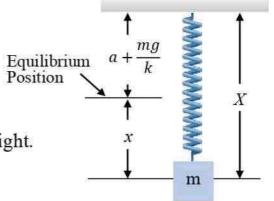
$$\therefore F = -kx$$

$$-kx = m\ddot{x}$$

$$\therefore m\ddot{x} + kx = 0 \dots (6)$$



معادلة (6) هي معادلة تفاضلية من الدرجة الثانية ذات معاملات ثابتة لمذبذب توافقي أو مذبذب خطي. ويتم استخدام طريقة التجربة لحل المعادلة والذي فيه نجرب الحل (Ae^{qt}) حيث ان (q) ثابت.



$$x = Ae^{qt} \dots (7)$$

$$\frac{dx}{dt} = \dot{x} = Aqe^{qt} \dots (8)$$

$$\frac{d^2x}{dt^2} = \ddot{x} = Aq^2 e^{qt} \dots (9)$$
Sub. Eq. (7) and (9) in Eq. (6)
$$m \ q^2 A e^{qt} + kA \ q^{qt} = 0 \quad] \div A e^{qt}$$

$$mq^2 + k = 0$$

$$mq^2 = -k$$

$$q^2 = -\frac{k}{m}$$

$$\therefore q = \mp \sqrt{\frac{-k}{m}} = \mp i\sqrt{\frac{k}{m}}$$
where $i = \sqrt{-1}$, $\sqrt{\frac{k}{m}} = w_0$

$$q = \mp iw_0 \dots (10)$$
Sub. Eq. (10) in Eq. (7)
$$\therefore x = Ae^{\mp i w_0 t} \dots (11)$$

For a linear differential eqns., solution are additive, so, the general solution is:

$$x = A_{+} e^{iw_{0}t} + A_{-} e^{-iw_{0}t} \dots \dots (12)$$

using Euler's formula

$$e^{iu} = \cos u + i \sin u$$

So we can rewrite Eq. (12) in the form:

$$x = A_{+}(\cos w_{0}t + i\sin w_{0}t) + A_{-}(\cos w_{0}t - i\sin w_{0}t)$$

$$= A_{+}\cos w_{0}t + iA_{+}\sin w_{0}t + A_{-}\cos w_{0}t - iA_{-}\sin w_{0}t$$

$$= (A_{+} + A_{-})\cos w_{0}t + (iA_{+} - iA_{-})\sin w_{0}t$$

$$x = a\sin w_{0}t + b\cos w_{0}t \dots \dots (13)$$

where
$$a = i A_{+} - i A_{-}$$
 and $b = A_{+} + A_{-}$

The real solution of Eq. (13) is:

$$x = b \cos w_0 t$$

or $x = A\cos(w_0t + \theta_0) \dots \dots (14)$ Sinusoidal Oscillation of Displacement x

where: w_o is angular frequency

التردد الزاوي

A is *amplitude* (the maximum value of x)

السعة (اعظم قيمة للازاحة)

Equation (14) represent cosine function for two angle

So,
$$A\cos(w_0t + \theta_o) = A(\cos w_0t \cos \theta_o + \sin w_0t \sin \theta_o)$$

Let
$$a = A \cos \theta_o$$
, $b = A \sin \theta_o$

$$a^2 + b^2 = (A\cos\theta_0)^2 + (A\sin\theta_0)^2 = A^2(\cos^2\theta_0 + \sin^2\theta_0)$$

$$A = (a^2 + b^2)^{1/2}$$

$$\frac{b}{a} = \frac{A \sin \theta_o}{A \cos \theta_o} = \tan \theta_o$$

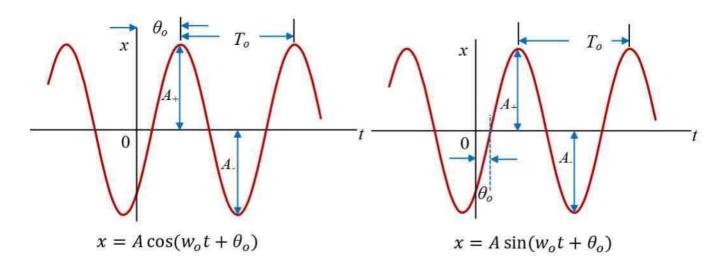
$$\theta_0 = \tan^{-1}\left(\frac{b}{a}\right) \dots \dots (15)$$
 Initial Phase

 T_o is **time period** of the oscillation (time required for one complete cycle); that is, the period is the time for which the product (wt) increase by just (2π)

$$T_o = \frac{2\pi}{w_0} = 2\pi \sqrt{\frac{m}{k}} \dots \dots (16)$$

زمن الذبذبة الزمن اللازم لدورة كاملة

$$w_0 = 2\pi f_0 \dots (17)$$



 $f_0 \equiv \text{Linear}$ frequency of oscillation (is the number of cycles in unit time)

$$f_0 = \frac{1}{T_0} = \frac{1}{2\pi} \sqrt{\frac{k}{m}} \dots \dots (18)$$

التردد الخطي للمتذبذب والذي يمثل عدد الدورات لوحدة الزمن

Example:

A light spring is found to stretch an amount b when it supports a block of mass m. If the block is pulled downward a distance l from its equilibrium position and released at time = 0, find the resulting motion as a function of t.

Solution:

In the static equilibrium

$$F = -kb = -mg$$

$$\therefore k = \frac{mg}{b}$$

$$w_0 = \sqrt{\frac{k}{m}} = \sqrt{\frac{mg}{mb}} = \sqrt{\frac{g}{b}}$$

Now find the constants for the equation of motion

$$x = A\cos(w_0t + \theta_0)$$

$$at \ t = 0 \ , \quad x = l \quad \text{and } \dot{x} = 0$$

$$\dot{x} = -A w_0 \sin(w_0t + \theta_0)$$

$$\dot{x} = -A w_0 \sin(w_0(0) + \theta_0) = 0$$

$$A w_0 \neq 0 \ , \quad A = l \ is \ spring \ length, w_0 \ is \ angular \ frequncy$$

$$A = l = X_{max}$$

$$\therefore \sin(\theta_0) = 0 \ \Rightarrow \theta_0 = 0$$

$$x = A \cos(w_0t)$$

$$\therefore x = l \cos\left(\sqrt{\frac{g}{b}}t\right)$$

3.3 Energy Consideration in Harmonic Motion

Consider a particle moving under a linear restoring force =-kx. Let us calculate the work done by an external force f_a in moving the particle from the equilibrium position x = 0 to some position x.

نفترض جسيم يتحرك تحت تأثيرقوة معيدة خطية
$$-kx$$
 نحسب الشغل المنجز بواسطة قوة خارجية f_a لنقل الجسم من موضع التوازن $x=0$ إلى موضع ما x

$$F = -kx \dots (1)$$

$$F_a = -F = kx$$

$$\therefore W = \int F_a dx = \int_0^x kx dx = \frac{1}{2}kx^2$$

The work W is stored in the spring as potential energy الشغل يخزن في النابض كطاقة كامنة

$$V(x) = W = \frac{1}{2} kx^2 = E_p \dots (2)$$

Total spring energy

$$E = E_k + E_p$$

$$E = \frac{1}{2}m\dot{x}^2 + \frac{1}{2}kx^2 \dots (3) * \frac{2}{m}$$

$$\frac{2E}{m} = \dot{x}^2 + \frac{k}{m} x^2$$

$$\dot{x}^2 = \frac{2E}{m} - \frac{k}{m}x^2$$

$$\dot{x} = \left(\frac{2E}{m} - \frac{k}{m}x^2\right)^{1/2} \dots \dots (4)$$

This can be integrated to give (t) as function of x

$$\dot{x} = \frac{dx}{dt} \quad \Rightarrow dt = \frac{dx}{\dot{x}}$$

$$t = \int dt = \int \frac{dx}{\left(\frac{2E}{m} - \frac{k}{m}x^2\right)^{1/2}} \dots \dots (5)$$

> Derive the Equation of Time

• When $x = A \cos \theta$

Rewrite Eq.(5)

$$t = \int \frac{dx}{\left[\left(\frac{k}{m} \right) \left(\frac{2E}{k} - x^2 \right) \right]^{1/2}} = \int \frac{dx}{\left(\frac{k}{m} \right)^{1/2} \left[\left(\frac{2E}{k} - x^2 \right) \right]^{1/2}}$$

$$= \sqrt{\frac{m}{k}} \int \frac{dx}{\sqrt{\frac{2E}{k} - x^2}} = \sqrt{\frac{m}{k}} \int \frac{dx}{\sqrt{A^2 - x^2}} \dots \dots (6)$$

where $A = \sqrt{\frac{2E}{k}} \equiv \text{amplitude}$

$$x = A\cos\theta \dots (7)$$

$$\therefore x^2 = A^2 \cos^2 \theta$$
$$\therefore A^2 - x^2 = A^2 - A^2 \cos^2 \theta$$

$$=A^2(1-\cos^2\theta)$$

$$A^2 - x^2 = A^2 \sin^2 \theta$$

$$\sqrt{A^2 - x^2} = A \sin \theta \dots \dots (8)$$

From Eq.(7)

$$dx = -A\sin\theta \ d\theta \dots \dots (9)$$

Sub. Eqns.(8) and (9) in Eq. (6)

$$t = -\sqrt{\frac{m}{k}} \int \frac{A \sin \theta}{A \sin \theta} \ d\theta$$

$$t = -\sqrt{\frac{m}{k}} \int d\theta$$

$$t = -\sqrt{\frac{m}{k}}\theta + c \dots \dots (10)$$

$$x = A \cos \theta$$

$$\therefore \cos \theta = \frac{x}{A} \Rightarrow \theta = \cos^{-1} \left(\frac{x}{A}\right) \dots \dots (11)$$

Sub. Eq.(11) in Eq. (10)

$$t = -\sqrt{\frac{m}{k}}\cos^{-1}\left(\frac{x}{A}\right) + c \dots \dots (12)$$

• When $x = A \sin \theta$

$$\therefore \sin \theta = \frac{x}{A} \Rightarrow \theta = \sin^{-1} \left(\frac{x}{A}\right) \dots \dots (a)$$

$$dx = A\cos\theta \ d\theta \dots \dots (b)$$

$$A^{2} - x^{2} = A^{2} - A^{2} \sin^{2} \theta = A^{2} (1 - \sin^{2} \theta)$$

$$A^2 - x^2 = A^2 \cos^2 \theta$$

$$\sqrt{A^2 - x^2} = A \cos \theta \dots (c)$$

Sub. Eqns. (b) and (c) in Eq. (6)

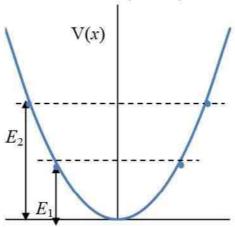
$$t = \sqrt{\frac{m}{k}} \int \frac{A\cos\theta}{A\cos\theta} \ d\theta$$

$$t = \sqrt{\frac{m}{k}}\theta + c \dots \dots (d)$$

Sub. Eq. (a) in Eq. (d)

$$t = \sqrt{\frac{m}{k}} \sin^{-1} \left(\frac{x}{A}\right) + c \dots \dots (13)$$

The value of x must lie between $\pm A\left(\pm\sqrt{\frac{2E}{k}}\right)$ in order for \dot{x} to be real



Potential energy function of the harmonic oscillator.

1) at the upper point

$$x = X_{max}$$
 , $v = 0$

$$\therefore E = \frac{1}{2}mv^2 + \frac{1}{2}kx^2$$

$$E = 0 + \frac{1}{2}k$$

$$X_{max} = A$$

$$\therefore E = \frac{1}{2}kA^2 \to A = \sqrt{\frac{2E}{k}}$$

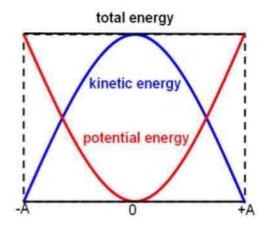
2) at the lower point

$$x = 0$$
 , $v = v_{max}$

$$\therefore E = \frac{1}{2} m v_{max}^2$$

$$\begin{split} &\frac{1}{2}m \ v_{max}^2 = \frac{1}{2}kA^2 \\ &v_{max}^2 = \frac{k \ A^2}{m} \\ &v_{max} = \sqrt{\frac{k}{m}}A = Aw_0 \quad \textit{Maximum Velocity for Harmonic Oscillator} \\ &A = \frac{v_{max}}{w_0} \end{split}$$

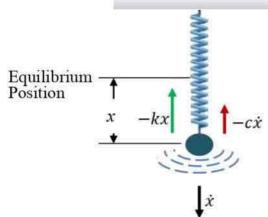
As the particle oscillates, the kinetic and potential energies continually change. The constant total energy is entirely in the form of kinetic energy at the center, where x = 0 and $\dot{x} = \pm v_{max}$ and it is all potential energy at extrema, where $x = \pm A$ and $\dot{x} = 0$.



عندما يتأرجح الجسيم، تتغير الطاقة الكامنة والحركية باستمرار. تكون الطاقة الكلية ثابتة حيث تكون بشكل طاقة حركية في المركز و طاقة كامنة عند النهايات.

3.4 Damped Harmonic Motion

The foregoing analysis of the harmonic oscillator is *idealized* in that we didn't take into account *frictional forces*. These are always present in any mechanical system. Consider an object is supported by a spring of stiffness k and there was a viscous retarding force varying linearly with the speed such as air resistance. It limits a prince of the prince of



$$F = -kx \dots (1)$$
 (restoring force)

$$F = -c \dot{x} \dots (2)$$
 (retarding force)

Equation of motion then:

$$\therefore -kx - c\dot{x} = m\ddot{x} \dots (3)$$

 $m\ddot{x} + c\dot{x} + kx = 0$... (4) Differential Eq. of Motion for Damped Harmonic Oscillator Use trail method to solve Eq. (4)

$$x = A e^{qt}$$

$$\therefore m \frac{d^2}{dt^2} (A e^{qt}) + c \frac{d}{dt} (A e^{qt}) + k A e^{qt} = 0$$

$$m q^2 A e^{qt} + cq A e^{qt} + k A e^{qt} = 0] \div A e^{qt}$$

$$mq^2 + cq + k = 0 \dots \dots (5)$$

$$Auxiliary Equation$$

$$q = \frac{-c + \sqrt{c^2 - 4mk}}{2m} \dots (6)$$

$$ax^{2} + bx + c = 0$$

$$x = \frac{-b \pm \sqrt{b^{2} - 4ac_{1}}}{2a}$$

$> c^2 > 4mk$ (Over Damping)

Here q will be real and negative and the motion will be nonoscillatory $q_1 \neq q_2$ and (x) decaying to zero exponentially with time.

المقدار
$$c^2 - 4mk$$
 يحدد نوع التذبذب

حالة مثل حالة فوق التضاؤل حالة حالة حالة عالم حالة حالة التضاؤل

$$q = - \begin{cases} \gamma_1 \\ \gamma_2 \end{cases} \Rightarrow x = \begin{cases} A_1 e^{-\gamma_1 t} \\ A_2 e^{-\gamma_2 t} \end{cases}$$

 $q = \gamma_2$ وعندها q تمتلك قيمتين حقيقيتين سالبتين سالبتين وعندها q تمتلك قيمتين حقيقيتين سالبتين اذلك تكون الحركة غير تنبذبية $x = A_1 e^{-\gamma_1 t} + A_2 e^{-\gamma_2 t} \dots$ (7)

$$> c^2 = 4mk$$
 (Critical Damping)

Here q will be real also, and negative and the motion will be nonoscillatory. (x) decaying to zero exponentially with time but in shorter time.

$$q_1 = q_2 = -\frac{c}{2m}$$

$$q = -\gamma \implies x = \begin{cases} A_1 e^{-\gamma t} \\ A_2 t e^{-\gamma t} \end{cases}$$

The general solution for displacement is:

$$x = A_1 e^{-\gamma t} + A_2 t e^{-\gamma t} \dots (8)$$

$$x = e^{-\gamma t} (A_1 + tA_2) \dots (9)$$



حالة $c^2=4mk$ تمثل حالة التضاؤل الحرج وعندها q تمتلك قيمتين حقيقيتين سالبتين متساويتين لذلك تكون الحركة غير تذبذبية وتهبط فيها قيمة الازاحة χ أسياً الى الصفر مع الزمن

$> c^2 < 4mk \ (Under Damping)$

Here q will be complex; the imaginary part of its value gives an oscillatory motion.

$$q = \frac{-c \pm \sqrt{c^2 - 4mk}}{2m}$$

$$q = \frac{-c \pm \sqrt{\left(c^2 \cdot \frac{4m^2}{4m^2} - 4mk \cdot \frac{4m^2}{4m^2}\right)}}{2m}$$

$$q = \frac{-c \mp \sqrt{\left(c^{2} \cdot \frac{4m}{4m^{2}} - 4mk \cdot \frac{4m}{4m^{2}}\right)}}{2m}$$

$$q = \frac{-c \mp \sqrt{4m^{2}\left(\frac{c^{2}}{4m^{2}} - \frac{k}{m}\right)}}{2m} = \frac{-c \mp 2m\sqrt{\left(\frac{c^{2}}{4m^{2}} - \frac{k}{m}\right)}}{2m}$$

$$= \frac{-c \mp \sqrt{4m^{2}\left(\frac{c^{2}}{4m^{2}} - \frac{k}{m}\right)}}{2m} = \frac{-c \mp 2m\sqrt{\left(\frac{c^{2}}{4m^{2}} - \frac{k}{m}\right)}}{2m}$$

$$= \sqrt{\frac{2m^{2}}{4m^{2}}}$$

$$q = \frac{-c + 2m\sqrt{\gamma^2 - w_0^2}}{2m}$$

$$q = -\frac{c}{2m} \mp \sqrt{\gamma^2 - w_0^2}$$

$$q_{1,2} = -\frac{c}{2m} + i\sqrt{w_0^2 - \gamma^2} = -\gamma + iw_1$$
 Complex Conjugates Roots

where $w_1 = \sqrt{w_0^2 - \gamma^2}$ is *Natural Frequency*

$$q_1 = -\gamma + i w_1$$

$$q_2 = -\gamma - i \, w_1$$

The Displacement then:

$$\therefore x = A_{+} e^{(-\gamma + i w_{1})t} + A_{-} e^{(-\gamma - i w_{1})t} \dots \dots (10)$$

$$\therefore x = e^{-\gamma t} (A_{+} e^{i w_{1} t} + A_{-} e^{-i w_{1} t})$$

$$e^{iu} = \cos u + i \sin u$$
 Euler's Formula

$$x = e^{-\gamma t} \left[(i A_{+} - i A_{-}) \sin w \ t + (A_{+} + A_{-}) \cos w_{1} t \right]$$

$$x = e^{-\gamma t} \left(a \sin w_{1} t + b \cos w_{1} t \right)$$
where $a = i (A_{+} - A_{-}), b = A_{+} + A_{-}$
or $x = A e^{-\gamma t} \cos(w_{1} t + \theta_{0}) \dots \dots (11)$
where $\theta_{0} = \tan^{-1} \left(\frac{b}{a} \right)$

$$A = (a^{2} + b^{2})^{1/2}$$

$$x = A e^{-\gamma t}$$

Equation (11) shows that the *two curves* are given by $x = +Ae^{-\gamma t}$ and $x = +Ae^{-\gamma t}$ form an *envelope* of the curve of motion because the cosine factor takes on values between +1 and -1, including +1 and -1, at which points the curve of motion touches the envelope. Accordingly, the points of contact are separated by a time interval of *one-half period*.

في حالة $c^2 < 4mk$ والتي تمثل حالة دون التضاؤل عندها نحصل على قيمتين غير حقيقيتين (خيالية) لم والحركة هنا تكون تذبذبية والسعة تتضائل اسياً مع الزمن.

تظهر المعادلة (11) وجود منحنيتين هما $x = +Ae^{-\gamma t}$ و $x = +Ae^{-\gamma t}$ يشكلان غلافاً لمنحنى الحركة لأن عامل الجيب تمام يأخذ القيم بين +1 و -1 ، بضمنها +1 و -1 ، والتي يمس فيها منحنى الحركة ، الغلاف. وفقًا لذلك ، لذلك تنفصل نقاط التماس بفترة زمنية مقدار ها نصف مدة الذبذبة.

3.5 Energy Consideration for Damped Harmonic Oscillator

The total energy of the damped harmonic oscillator is given by the sum of the kinetic and potential energies $E_t = E_k + E_p$ $E_t = E_k + E_p$

$$E_t = \frac{1}{2}m \dot{x}^2 + \frac{1}{2}k x^2 \dots (1)$$

To find *time rate* of change of E_t , we have to differentiate E_t with respect to t:

$$\frac{dE_t}{dt} = \frac{1}{2} 2m\dot{x}\frac{d\dot{x}}{dt} + \frac{1}{2} 2kx\frac{dx}{dt}$$
$$= m\ddot{x}\dot{x} + k\dot{x}x$$

$$\frac{dE_t}{dt} = (m\ddot{x} + kx)\dot{x} \dots (2)$$

We have the Eq. of motion for the damped harmonic oscillator

$$m\ddot{x} + c\dot{x} + kx = 0$$

$$m\ddot{x} + kx = -c\dot{x} \dots (3)$$

Sub. Eq. (3) in Eq. (2)

$$\therefore \frac{dE_t}{dt} = -c\dot{x}^2 \dots \dots (4)$$

This equation represents the rate at which the energy E_t dissipated as frictional heat by virtue of the viscous resistance to the motion.

3.6 Forced Harmonic Motion (Resonance)

In this section, we study the motion of a damped harmonic oscillator that is subjected to a periodic driving force by an external agent.

Consider a damped harmonic oscillator motion affected by an external force (F_{ext}) that varying as a **cosine** wave with time t, the **angular frequency** w and **amplitude** (F_0) such that

$$F_{ext} = F_0 \cos(wt + \theta) \dots \dots (1)$$

$$F_{ext} = F_0 e^{i(wt+\theta)} \dots \dots (2)$$

There are three forces attached on the body:

- 1. Elastic restoring Force = -kx
- 2. The viscous damping force = $-c\dot{x}$
- 3. External force = F_{ext}

خارجية توافقية. اي قوة تتغير بدالة جيبية مع الزمن

هناك ثلاث قوى مؤثرة في الجسم:

- (-kx) قوة معيدة مرنة
- $(-c\dot{x})$ قوة لزوجة مضمعلة
 - (F_{ext}) قوة خارجية •

عليه تكون القوة الكلية المؤثرة على الجسم مجموع لهذه القوى الثلاث So, total force is:

$$\therefore -kx - c\dot{x} + F_{ext} = m\ddot{x} \dots \dots (3)$$

$$m\ddot{x} + c\dot{x} + kx = F_{ext} = F_0 e^{i(wt+\theta)} \dots \dots (4)$$

Eq.(4) represent differential damped harmonic oscillator motion affected by an external force (F_{ext}). Suggested solution of this equation as:

$$x = A e^{i(wt+\theta')} \dots (5)$$
 (F_{ext}) معلالة الحركة امتنبنب ترافقي $\dot{x} = \frac{dx}{dt} = \frac{d}{dt} A e^{i(wt+\theta')}$ مضمحل تحت تأثير قوة خارجية $\dot{x} = \frac{dx}{dt} = \frac{d}{dt} A e^{i(wt+\theta')}$ $\dot{x} = i \ A \ w \ e^{i(wt+\theta')} = i \ wx \ \dots (6)$ $\ddot{x} = \frac{d^2x}{dt^2} = \frac{d^2}{dt^2} A e^{i(wt+\theta')}$ $\ddot{x} = i^2 \ A \ w^2 \ e^{i(wt+\theta')} = i^2 \ w^2 \ x = -w^2 \ x \dots (7)$ Sub. Eqns.(5) ,(6) and (7) in Eq. (4).
$$-mAw^2 e^{i(wt+\theta')} + cAwi \ e^{i(wt+\theta')} + kAe^{i(wt+\theta')} = F_0 \ e^{i(wt+\theta)}] * e^{-i(wt+\theta')}$$
 $\therefore -mA \ w^2 + i \ wcA + kA = F_0 e^{i(wt+\theta)} . e^{-i(wt+\theta')}$
$$-mAw^2 + i \ wcA + kA = F_0 [e^{iwt} \ e^{i\theta} \ e^{-iwt} \ e^{-i\theta'}]$$

$$-mAw^2 + i \ wcA + kA = F_0 e^{i(\theta-\theta')}$$

$$-mAw^2 + i \ wcA + kA = F_0 [\cos(\theta-\theta') + i \sin(\theta-\theta')]$$

where $\varphi = (\theta - \theta') \equiv Phase \ difference \ (Phase \ angle)$

Separation between real and imaginary terms, we get:

$$-mA w^{2} + kA = F_{0} \cos(\theta - \theta') = F_{0} \cos \varphi$$

$$iwcA = iF_{0} \sin(\theta - \theta') = i F_{0} \sin \varphi$$

$$A(k - mw^{2}) = F_{0} \cos \varphi \dots \dots (8)$$

$$cwA = F_{0} \sin \varphi \dots \dots (9)$$

Dividing Eq. (9) on Eq. (8)

$$\frac{cw}{k-mw^2} = \frac{F_0 \sin \varphi}{F_0 \cos \varphi} = \tan \varphi \dots \dots (10)$$

Squaring and adding Eqns. (8) and (9)

$$A^{2}(k - mw^{2})^{2} + c^{2}w^{2}A^{2} = F_{0}^{2}(\cos^{2}\varphi + \sin^{2}\varphi) = F_{0}^{2} \dots \dots (12)$$

$$A^{2}[(k - mw^{2})^{2} + c^{2}w^{2}] = F_{0}^{2}$$

$$A^{2} = \frac{F_{0}^{2}}{(k - mw^{2})^{2} + c^{2}w^{2}}$$

$$A = \frac{F_{0}}{\sqrt{(k - mw^{2})^{2} + c^{2}w^{2}}} \dots \dots (13)$$

by dividing the numerator and denominator on m

$$A = \frac{\frac{F_0}{m}}{\sqrt{\left(\frac{k}{m} - \frac{mw^2}{m}\right)^2 + \frac{c^2w^2}{m}}}$$

So, in term of γ and w_0

$$A = \frac{F_0/m}{\sqrt{(w_0^2 - w^2)^2 + 4\gamma^2 w^2}} \dots \dots (14)$$
 Steady State Oscillation Amplitude

Eq. (14) represent the amplitude (A) as a function of the driving frequency (w). The maximum value of amplitude valid only at $(w = w_0)$ (Resonance Frequency). To find this frequency equal differential amplitude equation by zero.

$$(w=w_0)$$
 عند (14) تمثل السعة (A) كدالة للتريد الدافع (w). القيمة القصوى للسعة تتحقق فقط عند (14) معادلة (14) $\frac{dA}{dw} = \frac{d}{dw} \left[\frac{F_0/m}{\sqrt{(w_0^2-w^2)^2+4\gamma^2w^2}} \right]$
$$= \frac{F_0}{m} \frac{d}{dw} \left[(w_0^2-w^2)^2+4\gamma^2w^2 \right]^{-\frac{1}{2}}$$

$$= \frac{F_0}{m} \frac{d}{dw} \left[w_0^4+w^4-2w_0^2w^2+4\gamma^2w^2 \right]^{-\frac{1}{2}}$$

$$\begin{split} \frac{dA}{dw} &= \frac{F_0}{m} \left(\frac{-1}{2} \right) \left[w_0^4 + w^4 - 2w_0^2 \ w^2 + 4\gamma^2 w^2 \right]^{-\frac{3}{2}} \cdot \left[0 + 4w^3 - 4w_0^2 w + 8\gamma^2 w \right] \\ &= \frac{F_0}{m} \left(\frac{-1}{2} \right) \frac{4 \ w^3 - 4w_0^2 \ w + 8\gamma^2 \ w}{\sqrt[3]{\left(w_0^2 - w^2\right)^2 + 4\gamma^2 w^2}} \\ &= \frac{-F_0}{2m} \frac{4 \ w^3 - 4w_0^2 \ w + 8\gamma^2 \ w}{\sqrt[3]{\left(w_0^2 - w^2\right)^2 + 4\gamma^2 w^2}} \right] * \frac{-m}{2F_0 \ w} \\ &\frac{dA}{dw} = \frac{-F_0}{2m} \frac{4 \ w^3 - 4w_0^2 \ w + 8\gamma^2 \ w}{\sqrt[3]{\left(w_0^2 - w^2\right)^2 + 4\gamma^2 w^2}} \right] * \frac{-m}{2F_0 \ w} \\ &\frac{dA}{dw} = \frac{mF_0}{4mF_0 \ w} \frac{4w \left(w^2 - w_0^2 + 2\gamma^2\right)}{\sqrt[3]{\left(w_0^2 - w^2\right)^2 + 4\gamma^2 w^2}} = \frac{\left(w^2 - w_0^2 + 2\gamma^2\right)}{\sqrt[3]{\left(w_0^2 - w^2\right)^2 + 4\gamma^2 w^2}} \\ &\frac{dA}{dw} = 0 \\ & \therefore \ w^2 - w_0^2 + 2\gamma^2 = 0 \\ & w^2 = w_0^2 - 2\gamma^2 \\ & w = w_r = \left(w_0^2 - 2\gamma^2\right)^{1/2} \dots \dots (15) \quad \textit{Resonant Frequency Equation} \end{split}$$

where $w_r \equiv resonant frequency$ for maximum amplitude.

In case of weak damping, that is, when $c \ll 2\sqrt{mk}$ or $\gamma \ll w_0$

Then $w_0 = w_r$

From Eq. (14) and (15) we can find A_{max} in Resonant frequency.

$$w^2 = w_0^2 - 2\gamma^2 \dots \dots (16)$$

$$2\gamma^2 = w_0^2 - w^2 \dots (17)$$

Sub. Eq. (16) and (17) in Eq. (14)

$$A = \frac{F_0/m}{\sqrt{(2\gamma^2)^2 + 4\gamma^2(w_0^2 - 2\gamma^2)}}$$

$$A = \frac{F_0/m}{\sqrt{4\gamma^4 + 4\gamma^2 w_0^2 - 8\gamma^4}}$$

$$A = \frac{F_0/m}{\sqrt{4\gamma^2 w_0^2 - 4\gamma^4}}$$

$$A = \frac{F_0/m}{\sqrt{4\gamma^2(w_0^2 - \gamma^2)}}$$

$$\therefore A_{max} = \frac{F_0/m}{2\gamma\sqrt{(w_0^2 - \gamma^2)}} \dots \dots (18)$$

In other form:

$$A_{max} \approx \frac{F_0}{2m\gamma \sqrt{(w_0^2 - \gamma^2)}}$$

$$A_{max} \approx \frac{F_0}{c\sqrt{(w_0^2 - \gamma^2)}} \dots \dots (19)$$

$$\frac{c}{2m} = \gamma \quad \therefore c = 2m\gamma$$

In weak damping $\gamma \ll w_0$ then γ^2 can be *neglect*

$$A_{max} \simeq \frac{F_0}{2\gamma m w_0} = \frac{F_0}{c w_0} \dots \dots (20)$$

$$F_0 \cong 2A_{max} \gamma m w_0 = A_{max} c w_0$$

Sub. Eq. (20) in Eq. (14)

$$A = \frac{A_{max} \gamma}{\sqrt{(w_0 - w)^2 + \gamma^2}} \dots \dots (21)$$

when
$$|w_0 - w| = \gamma$$

or
$$w = w_0 \mp \gamma$$

Then

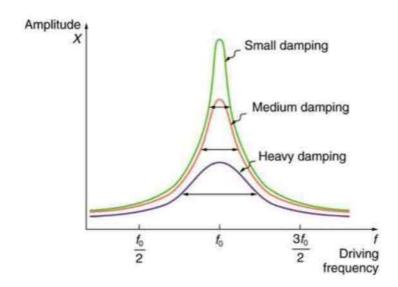
$$A = \frac{A_{max} \gamma}{\sqrt{(w_0 - w_0 + \gamma)^2 + \gamma^2}}$$

$$A = \frac{A_{max} \gamma}{\sqrt{\gamma^2 + \gamma^2}} = \frac{A_{max} \gamma}{\sqrt{2\gamma^2}} = \frac{A_{max} \gamma}{\sqrt{2} \gamma}$$

$$A^2 = \frac{1}{2} A^2_{max} \dots \dots (22)$$

This means that γ is a measure of the width of the resonance curve. Thus, 2γ is the frequency difference between the points for which the energy is down by a factor of $\frac{1}{2}$ from the energy at resonance because the energy is proportional to A^2 .

هذا يعني أن γ هو مقياس لعرض منحنى الرنين. لذلك 2γ تمثل فرق التردد بين النقطتين اللتين تنخفض فيهما الطاقة بمقدار نصف طاقة الرنين لأن الطاقة تتناسب مع A^2



Another way of designating the sharpness of the resonance peak for the driven oscillator is in terms of the parameter (Q) called **Quality Factor** of the resonant system.

هناك طريقة أخرى لتعيين حدة قمة الرنين للمتبذب القسري وهي من خلال حساب المعامل (Q) الذي يسمى معامل النوعية للرنين.

$$Q = \frac{w_r}{2\gamma} \dots \dots (23)$$

In the case of weak damping

في حالة التضاؤل الضعيف

$$Q \approx \frac{w_0}{2\gamma} \dots \dots (24)$$

The total width Δw at the half energy points is approximately

$$\Delta w = 2\gamma \approx \frac{w_0}{Q} \dots \dots (25)$$

$$w = 2\pi f$$

$$\therefore \frac{\Delta w}{w_0} = \frac{\Delta f}{f_0} \approx \frac{1}{Q} \dots \dots (26)$$

giving the fractional width of the resonance peak,

العرض الجزئي لقمة الرنين

 $Q = 10^4$ [quartz oscillators]

Example:

Determine the resonance frequency and the quality factor for the damped oscillator if the damping frequency $=\frac{w_0}{4}$. Then find the phase angle θ if the applied frequency is $\frac{w_0}{2}$

Solution:

$$w_r = (w_0^2 - 2\gamma^2)^{1/2}$$

$$= (w_0^2 - \frac{2w_0^2}{16})^{1/2}$$

$$= w_0 \sqrt{\frac{7}{8}} = \sqrt{\frac{k}{m}} \sqrt{\frac{7}{8}}$$

$$Q = \frac{w_r}{2\gamma} = \frac{w_0(\frac{7}{8})^{1/2}}{2(\frac{w_0}{4})} = 2\sqrt{\frac{7}{8}} = 1.87$$

$$\tan \varphi = \frac{2\gamma w}{(w_0^2 - w^2)}$$

$$= \frac{2\frac{w_0}{4}\frac{w_0}{2}}{w_0^2 - (\frac{w_0}{2})^2} = \frac{2\frac{w_0^2}{8}}{w_0^2 - \frac{w^2}{4}}$$

$$= \frac{\frac{1}{4}w_0^2}{w_0^2(1 - \frac{1}{4})} = \frac{\frac{1}{4}}{\frac{3}{4}} = \frac{1}{4} \cdot \frac{4}{3} = \frac{1}{3}$$

$$\tan \varphi = \frac{1}{3} \Rightarrow \varphi = \tan^{-1}(\frac{1}{3}) = 18.5^0$$

4.1 Introduction

We now examine the general case of the motion of a particle in three dimensions. The vector form of the equation of motion for such a particle is

$$\vec{F} = \frac{d\vec{P}}{dt}$$
(1) (Newton's 2nd Law)

in which $\vec{P} = m\vec{v}$ is the linear momentum of the particle.

$$\vec{F} = \frac{d(m\vec{v})}{dt} \quad \dots \dots (2)$$

This vector equation is equivalent to *three scalar equations* in Cartesian coordinates.

$$F_{x}=rac{d}{dt}(m\dot{x})=m\ddot{x}$$
 يوصف بدلالة ثلاث مركبات عددية في الاحداثيات الكارتيزية $F_{y}=rac{d}{dt}(m\dot{y})=m\ddot{y}$ (3) $F_{z}=rac{d}{dt}(m\dot{z})=m\ddot{z}$

لاتوجد طريقه عامة لايجاد الحلول لجميع الحالات الممكنه للقوة. لكن هناك انواع عديدة لدوال القوة يمكن حل معادلاتها التفاضليه بطرق بسيطه نسبياً.

4.2 The Work Principle

That means the work done on a particle causes it to gain or lose kinetic energy.

Take the dot product of both sides of Eq.(1) with the velocity \vec{v} :

$$\vec{F} \cdot \vec{v} = \frac{d\vec{P}}{dt} \cdot \vec{v}$$

$$\vec{F} \cdot \vec{v} = \frac{d(m\vec{v})}{dt} \cdot \vec{v} \dots \dots (3)$$

$$= m \frac{d\vec{v}}{dt} \cdot \vec{v} = m \frac{d}{dt} (\vec{v} \cdot \vec{v})$$

$$= m \left(\vec{v} \frac{d\vec{v}}{dt} + \vec{v} \frac{d\vec{v}}{dt} \right)$$

$$= 2m \vec{v} \frac{d\vec{v}}{dt}$$

$$\because \frac{d}{dt}(\vec{v}\cdot\vec{v}) = 2\vec{v}\frac{d\vec{v}}{dt}$$

$$\therefore \frac{d\vec{v}}{dt} = \frac{\frac{d}{dt}(\vec{v}\cdot\vec{v})}{2\vec{v}}$$

$$\vec{v} \cdot \vec{v} = |v||v|\cos\theta = |\vec{v}|^2$$

$$\therefore \frac{dv}{dt} = \frac{d}{dt} \left(\frac{|\vec{v}|^2}{2\vec{v}} \right) = \frac{d}{dt} \left(\frac{\vec{v}}{2} \right) \dots (4)$$

Multiply Eq.(4) by (m)

$$\frac{d(m\vec{v})}{dt} = \frac{d}{dt} \frac{m\vec{v}}{2} \dots \dots (5)$$

Sub. Eq.(5) in Eq. (3)

$$\vec{F} \cdot \vec{v} = \frac{d}{dt} \, \frac{m\vec{v}}{2} \cdot \vec{v}$$

$$\vec{F} \cdot \vec{v} = \frac{d}{dt} \left(\frac{1}{2} \ m \vec{v}^2 \right)$$

Where $(T = \frac{1}{2}m\vec{v}^2)$ is *kinetic energy*

$$\vec{F} \cdot \vec{v} = \frac{dT}{dt}$$

$$\vec{F} \cdot \vec{v}dt = dT$$

$$\vec{v} = \frac{dx}{dt} \implies \vec{v}dt = dx$$

$$\vec{F} \cdot d\vec{x} = dT \text{ (in one dimension)}$$

In general (Three dimension) $\vec{r} = (x, y, z)$

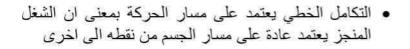
$$\frac{\vec{F} \cdot d\vec{r} = dT \quad (Differential Form)}{\int \vec{F} \cdot d\vec{r} = \int dT \quad (Integral Form)} \dots (6)$$
 Work Equation

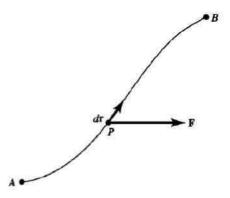
The equation states that the work done on the particle is equal to the increment in the kinetic energy.

- الشغل المنجز على جسيم يساوي صافي التغير في الطاقه الحركيه او يساوي الزيادة في الطاقه الحركية.
- معادلة (6) هي تكامل خطي يمثل الشغل المنجز على جسم من قبل القوة عندما يتحرك الجسم على طول مسار الحركة.

4.3 Conservative Forces and Force Fields

The line integral represents the work done on the particle by the force \vec{F} as the particle moves along its trajectory from **A** to **B**.





The work done by a force \vec{F} is the line integral $\int_A^B \vec{F} \cdot d\vec{r}$

Eq. (6) states that the work done on a particle by the net force acting on it, in moving from one position in space to another, is equal to the *difference in the kinetic energy* of the particle at these two positions, which mean that the work done on the particle depend on the *particle path* in the space. This required *detailed knowledge* of the motion of the particle from **A** to **B** to calculate the work done on it by the force.

In the case of a special type of force called conservative force, the **work** done by a force in moving a particle from point **A** to point **B** equal to the **difference** in the kinetic energy of the particle at these two positions. Many of the physically important forces are conservative type.

- أذا كانت F دالة للموقع فقط عندها يكون لدينا مجال قوة استاتيكية (static force field) وهذه القوة تكون محفوظة.
 - $ec{F}$. $dec{r}$ عنه بالعلاقه ألم و المجال الذي يعبر عنه بالعلاقه $ec{F}$
- فاذا كان الجسيم يتحرك في مجال محفوظ فيمكن حساب الشغل من تكامل المقدار \vec{F} , \vec{d} وبالتالي يمكن ان نحسب مقدار الزيادة في الطاقه الحركية.
- كون التكامل الخطي هنا يعتمد على المسار بين النقطتين A و B ، وهذا يتطلب معرفة تفصيلية لحركة الجسيم من النقطة A إلى النقطة B لحساب الشغل المنجز عليه من قبل القوة.
- عليه ستكون المعادلة فعالة في حالة القوى المحافظة فقط، ولكون اغلب القوى المؤثرة حولنا هي من النوع المحافظة فلن نجد مشكلة في حساب الشغل المنجز من التكامل $\vec{F} \cdot \vec{d} \cdot \vec{r}$

The tables below represent a comparison between conservative and non conservative forces with examples for each one of them.

Conservative forces	Non conservative forces
The force is called conservative if	The force is called non conservative
work done by force is dependent only	force if work is done by the force is
initial and final position of body not	depend on path followed by body.
depends on path followed by body.	
The work done by conservative force	The work done by non-
in close path is zero.	conservative force in a close path is
	not zero.

Non conservative forces
Frictional forces
Viscous forces
Air resistance force
Tension in a string
Propulsion force of the rocket

4.4 Potential Energy Function

The work integral in Cartesian coordinates given by:

$$\int F \cdot d\vec{r} = \int \left[F_x \, dx + F_y \, dy + F_z \, dz \, \right] \dots \dots (1)$$

$$F_{x} = -\frac{\partial V}{\partial x}$$

$$F_{y} = -\frac{\partial V}{\partial y}$$

$$F_{z} = -\frac{\partial V}{\partial z}$$

$$(2)$$

where V(x, y, z) is potential energy function (scalar function)

So, Eq.(1) become:

$$\int \vec{F} \cdot d\vec{r} = \int \left[-\frac{\partial v}{\partial x} dx - \frac{\partial v}{\partial y} dy - \frac{\partial v}{\partial z} dz \right]$$

$$\int \vec{F} \cdot d\vec{r} = -\int dV$$

$$\therefore \int \vec{F} \cdot d\vec{r} = - \int dV \dots (3)$$

By comparing with Eq.(6) in pervious section

$$\therefore \int dT = -\int dV$$

وهذا يدل على ان كل
$$T$$
 و $V-$ يختلف عن الاخر بكمية ثابتة

So, a general conservation of total energy principle:

$$T + V = Constant = E$$

$$\frac{1}{2} m v^2 + V_{(x,y,z)} = E \dots \dots (4)$$

When a particle moves in a *conservative field* of a force the *sum of kinetic and potential* energies remains *constant* throughout the motion.

4.5 The Potential in a Uniform Gravitational Field

In the case of a projectile moving in a uniform field of force such as a particle acted upon by gravity near the surface of the earth, only the gravity acts on the projectile, vertical motion. Choosing the z-axis to be vertical, the following equation of motion:

$$F_{x} = -\frac{\partial V}{\partial x} = 0$$

$$F_{y} = -\frac{\partial V}{\partial y} = 0$$

$$F_{z} = -\frac{\partial V}{\partial y} = -mg$$

$$.....(1)$$

اذا تحرك جسيم بتأثير مجال قوة منتظم مثل حركة جسيم بتأثير $F_x = -rac{\partial v}{\partial x} = 0$ قوة الجاذبيه الأرضية قرب سطح الأرض. فأذا كان الاتجاه $F_x = -rac{\partial v}{\partial x} = 0$ $F_y = -rac{\partial v}{\partial y} = 0$ $F_z = -rac{\partial v}{\partial z} = -mg$ = 0قوة الجاذبيه الارضية قرب سطح الارض. فأذا كان الاتجاه

$$\therefore \int dV = mg \int dz$$

$$V_{(x,y,z)} = mgz + c \quad (Potential Function)$$

where c is an arbitrary constant and it is equal to zero at the earth's surface. So ثابت التكامل c هو ثابت اعتباطي وقيمته تساوي صفر عند the energy equation becomes: سطح الارض $\frac{1}{2}m(\dot{x}^2 + \dot{y}^2 + \dot{z}^2) + mgz = E \dots (2)$

So, for any given case the total energy can be calculated from the knowledge of the initial conditions of the motion.

4.6 Conditions for the Existence of a Potential Function

One dimensional motion of a particle is always conservative if the force as a function of **position only**. That is, if we have a force, F(x), which is only a function of position, then F(x) dx is always a perfect differential. This means that we can define a potential function as

$$V=-\int F\cdot dx$$
 الحركة في خط مستقيم (بعد واحد) تكون دائماً محافظة اذا كانت القوه دالة للموقع $V=-\int F\cdot dx$ فقط، عليه يمكن حساب دالة الجهد من التكامل $V=-\int F\cdot dx$

In two and three dimensions, we would, in principle, expect that any force which depends only on position, F(r), to be conservative. In general, this is **not** sufficient, unless satisfy certain criteria does a potential function exits

Assume that a potential function is exist:

نفترض دالة الجهد موجودة

$$F_{x} = -\frac{\partial V}{\partial x}$$

$$F_{y} = -\frac{\partial V}{\partial y}$$

$$F_{z} = -\frac{\partial V}{\partial z}$$
......(2)

If we take the partial derivative of F_x with respect to y

$$\frac{\partial F_{X}}{\partial y} = -\frac{\partial^{2}V}{\partial y \partial x} \dots (3)$$
 $\frac{\partial F_{Y}}{\partial x} = -\frac{\partial^{2}V}{\partial x \partial y} \dots (4)$
 $\frac{\partial^{2}V}{\partial y \partial x} = \frac{\partial^{2}V}{\partial x \partial y} \dots (5)$
 $\frac{\partial^{2}V}{\partial y \partial x} = \frac{\partial^{2}V}{\partial x \partial y} \dots (6)$

الطرف الايمن من المعادلتين (3) و (4) متساوي لان V دالة مستمرة وكذلك مشتقتها الاولى والثانيه

A similar argument can be made with the pairs (F_y, F_z) , (F_x, F_z)

$$\frac{\partial F_{x}}{\partial y} = \frac{\partial F_{y}}{\partial x} \\
\frac{\partial F_{y}}{\partial z} = \frac{\partial F_{z}}{\partial y} \\
\frac{\partial F_{x}}{\partial z} = \frac{\partial F_{z}}{\partial x}$$
....(7)

These are the necessary conditions, on F_x , F_y and F_z for a potential function to exist. They express the condition that

 $\vec{F} \cdot d\vec{r} = F_x dx + F_y d_y + F_z d_z$ is an exact differential.

Then the force components are indeed derivable from a potential function, and the sum of the kinetic energy and potential energy is constant.

فاذا كانت المعادلات في
$$(7)$$
 صحيحة فان مركبات القوه تكون فعلا مشتقه من دالة الجهد $V_{(x,y,z)}$ ويكون مجموع الطاقه الحركيه والكامنه مقداراً ثابتاً. وهذه المعادلات تدعى بشروط تحقق (exist) دالة الجهد.

5.7 Potential for the Inverse (Square Law of Force)

Gravitational force varies inversely as square of the distance measured from the earth's center. This inverse - square relation is also found to be the law of force for electric fields of elementary particles.

قوة الجذب بين جسمين تتناسب عكسياً مع مربع المسافه بينهما وفي حالة الجاذبيه الارضيه (في مجال الارض) فانها تتناسب مع مربع المسافه المقاسة من مركز الارض.

ان علاقة التربيع العكسي هذه هي ايضاً تمثل قانون قوة مجال التنافر والتجاذب بين الشحنات الكهربائية.

The analytical form for the inverse – square law can be written as:

$$\vec{F} \alpha - \frac{1}{r^2}$$

$$\vec{F} = -k \frac{\vec{n}}{r^2}$$
(1) (The inverse – square law)

Where \vec{n} : unit vector in the direction of the radius vector r

k: constant proportionality

The negative sign indicates that the force is attractive or pointing toward the origin.

While positive sign denote a repulsive force pointing away from the origin.

$$(\vec{r}\,\,)$$
 الوحدة الاتجاهيه للازاحة (نصف القطر اي باتجاه قيمه نصف القطر : $ec{n}\,$

بابت التناسب: k

والاشارة السالبه دلالة على ان القوه هي تجاذبيه متجه نحو نقطه الاصل.

وتكون الاشارة موجبة عندما تكون القوه تنافرية مبتعدة عن نقطه الاصل.

$$\vec{n} = \frac{r}{|\vec{r}|} = \frac{\vec{r}}{r} \dots \dots (2)$$

Thus the inverse-square law can also be written as:

$$\therefore \vec{F} = -k \frac{\vec{r}}{r^3} \quad (3) \quad \text{(Inverse square law of force)}$$

In Cartesian coordinate

$$\vec{r} = ix + jy + kz \dots \dots (4)$$

and

$$r = (x^2 + y^2 + z^2)^{1/2} \dots (5)$$

So when Sub. Eqns. (4) and (5) in eqn. (3)

$$\vec{F} = -k (ix + jy + kz)(x^2 + y^2 + z^2)^{-3/2}$$
(6)Inverse-square law in rectangular coordinates

Consider that the potential function:

$$V(r) = -\frac{k}{r} \dots \dots (7)$$

Gives the correct force, that is:

$$F(r) = -\frac{dV}{dr} = -\frac{d}{dr}\left(-\frac{k}{r}\right) = -\frac{k}{r^2}$$
 [one dimension]

In three dimensions Eqn. (7) rewrite as:

$$V_{(x,y,z)} = \frac{-k}{(x^2+y^2+z^2)^{1/2}}$$

$$V_{(x,y,z)} = -k (x^2 + y^2 + z^2)^{-1/2}$$

Then the force components needed to give the force function

$$F_{x} = -\frac{\partial V}{\partial x} = -kx(x^{2} + y^{2} + z^{2})^{-3/2}$$

$$F_{y} = -\frac{\partial V}{\partial y} = -ky(x^{2} + y^{2} + z^{2})^{-3/2}$$

$$F_{z} = -\frac{\partial V}{\partial z} = -kz(x^{2} + y^{2} + z^{2})^{-3/2}$$
.....(8)

<u>Note:</u> k here is constant gravity while in the case of vibrational motion they were constant elastic (*Stiffness Constant*)

ملاحظة:
$$k$$
 هنا يمثّل ثابت الجاذبيه بينما في حالة الحركة الاهتز ازيه فانه يمثّل ثابت المرونه

4.8 The Del Operator

If the force field is conservative so that the components are given by the partial derivative of potential energy function.

اذا كان مجال القوه محافظاً عندها يمكن لمركبات القوة أن تعطى بدلالة المشتقات الجزئية لدالة الطاقة الكامنة. We can now express a conservative force F vectorially as:

$$\vec{F} = -i \frac{\partial V}{\partial x} - j \frac{\partial V}{\partial y} - k \frac{\partial V}{\partial z}$$

$$\vec{F} = -\nabla V \dots (1)$$

Where: $\overrightarrow{\nabla}$ is del operator given as:

$$\overrightarrow{\nabla} = i \frac{\partial}{\partial x} + j \frac{\partial}{\partial y} + k \frac{\partial}{\partial z} \dots \dots (2)$$

1. $\overrightarrow{\nabla}V = \text{Gradient } V \text{ or } (\text{grad } V)$

- Mathematically, the gradient of a function is a vector that represents the maximum spatial derivative of the function in direction and magnitude.
- Physically, the negative gradient of the potential energy function gives the direction and magnitude of the force that acts on a particle located in a field created by other particles.
- The meaning of the negative sign is that the particle is urged to move in the direction of decreasing potential energy rather than in the opposite direction.
 - ∇V يسمى بانحدار V.
 - رياضياً يعني التفاضل الموضعي للدالة في المقدار والاتجاه .
- فيزيائياً يعني أن الانحدار السالب لدالة الطاقه الكامنه يعطي اتجاه ومقدار القوة التي تؤثر على جسيم موضوع في مجال ناتج عن جسيمات اخرى.
 - الاشارة السالبه تعني ان الجسيم اجبر على الحركة باتجاه تناقص الطاقه الكامنه بدلاً من الاتجاه المعاكس،

$$\mathbf{2.}\,\overrightarrow{\nabla}\times F=\mathrm{Curl}\,\overrightarrow{f}$$

$$\vec{F}$$
 يسمى بدوران (التفاف) متجه القوة $\vec{V} \times \vec{F}$ •

The condition that a force be conservative can be written compactly as

$$\vec{\nabla} \times \vec{F} = 0 \dots (4)$$
 (Then The Force \vec{F} is Conservative)

$$\vec{\nabla} \times \vec{F} = \begin{vmatrix} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_x & F_y & F_z \end{vmatrix}$$

3. $\nabla \cdot \vec{F} = \text{divergence of } \vec{F}$

 $(\vec{\nabla} \cdot \vec{F})$ is called the divergence of \vec{F} which gives a measure of the density of the sources of the field at a given point, which is of particular importance in the theory of electricity and magnetism.

يمثل تفرق (تباعد) \vec{F} وهي مقياس لكثافة المجال في نقطه معينه وهي مهمة في النظريه الكهربائية والمغناطيسية.

Example 1: Find the gradient of scaler $f = x^3 - 2xy^5 + y^2z^3$

Solution:

$$\vec{\nabla}f = \mathbf{i}\frac{\partial f}{\partial x} + \mathbf{j}\frac{\partial f}{\partial y} + \mathbf{k}\frac{\partial f}{\partial z}$$

$$\vec{\nabla}f = \mathbf{i}\frac{\partial(x^3 - 2xy^5 + y^2z^3)}{\partial x} + \mathbf{j}\frac{\partial(x^3 - 2xy^5 + y^2z^3)}{\partial y} + \mathbf{k}\frac{\partial(x^3 - 2xy^5 + y^2z^3)}{\partial z}$$

$$\vec{\nabla}f = \mathbf{i}\frac{\partial}{\partial x}(x^3 - 2xy^5) + \mathbf{j}\frac{\partial}{\partial y}(-2xy^5 + y^2z^3) + \mathbf{k}\frac{\partial}{\partial z}(y^2z^3)$$

$$\vec{\nabla}f = \mathbf{i}(3x^2 - 2y^5) + \mathbf{j}(-10xy^4 + 2yz^3) + \mathbf{k}(3y^2z^2)$$

Example 2: Find the curl of vector $\vec{A} = x^2yi + xyzj - x^2y^2k$ Solution:

$$\vec{\nabla} \times \vec{A} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ A_x & A_y & A_z \end{vmatrix} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x^2 y & xyz & -x^2 y^2 \end{vmatrix}$$

$$= \mathbf{i} \left(\frac{\partial}{\partial y} (-x^2 y^2) - \frac{\partial}{\partial z} (xyz) \right) - \mathbf{j} \left(\frac{\partial}{\partial x} (-x^2 y^2) - \frac{\partial}{\partial z} (x^2 y) \right) + \mathbf{k} \left(\frac{\partial}{\partial x} (xyz - \frac{\partial}{\partial y} (x^2 y)) \right)$$

$$= \mathbf{i} \left(-2 x^2 y - xy \right) - \mathbf{j} (-2xy^2 - 0) + \mathbf{k} \left(yz - x^2 \right)$$

$$\vec{\nabla} \times \vec{A} = \mathbf{i} \left(-2 x^2 y - xy \right) + \mathbf{j} \left(2xy^2 \right) + \mathbf{k} \left(yz - x^2 \right)$$

Example 3: Find the divergence of vector $\vec{A} = x^2yi + xyzj - x^2y^2k$ Solution:

$$\vec{\nabla} \cdot \vec{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$$

$$\vec{\nabla} \cdot \vec{A} = \frac{\partial}{\partial x} (x^2 y) + \frac{\partial}{\partial y} (xyz) + \frac{\partial}{\partial z} (-x^2 y^2)$$

$$\vec{\nabla} \cdot \vec{A} = 2xy + xz + 0$$

$$\vec{\nabla} \cdot \vec{A} = 2xy + xz$$

Example 4: Is the force field $\vec{F} = ixy + jxz + kyz$ conservative?

Solution:

$$\vec{\nabla} \times \vec{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ xy & xz & yz \end{vmatrix}$$

$$\vec{\nabla} \times \vec{F} = \mathbf{i} \left(\frac{\partial}{\partial y} (yz) - \frac{\partial}{\partial z} (xz) \right) - \mathbf{j} \left(\frac{\partial}{\partial x} (yz) - \frac{\partial}{\partial z} (xy) \right) + \mathbf{k} \left(\frac{\partial}{\partial x} (xz) - \frac{\partial}{\partial y} (xy) \right)$$

$$\vec{\nabla} \times \vec{F} = \mathbf{i} (z - x) - \mathbf{j} (0 - 0) + \mathbf{k} (z - x)$$

$$\vec{\nabla} \times \vec{F} = \mathbf{i} (z - x) + \mathbf{k} (z - x)$$

$$\therefore \vec{\nabla} \times \vec{F} \neq 0 \quad \rightarrow \vec{F} \text{ is non conservative.}$$

Example 5: For what values of the constants a, b and c is the force

$$\vec{F} = i(ax + by^2) + jcxy$$
 conservative?

Solution:

$$\vec{\nabla} \times \vec{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ ax + by^2 & cxy & 0 \end{vmatrix}$$

$$= \mathbf{i} \left(\frac{\partial}{\partial y} (0) - \frac{\partial}{\partial z} (cxy) \right) - \mathbf{j} \left(\frac{\partial}{\partial x} (0) - \frac{\partial}{\partial z} (ax + by^2) \right) + \mathbf{k} \left(\frac{\partial}{\partial x} (cxy) - \frac{\partial}{\partial y} (ax + by^2) \right)$$

$$= \mathbf{i} (0 - 0) - \mathbf{j} (0 - 0) + \mathbf{k} (cy - 2by)$$

$$\vec{\nabla} \times \vec{F} = \mathbf{k} (c - 2b) \mathbf{y}$$

For conservative force must $\vec{\nabla} \times \vec{F} = 0$

$$\therefore c - 2b = 0$$

$$c = 2b$$

So \vec{F} be conservative when c = 2b

Example 6: Find the force field of the potential Function $V = x^2 + xy + xz$.

Solution:

$$\vec{F} = -\vec{\nabla} V$$

$$\vec{F} = -\left(\mathbf{i}\frac{\partial V}{\partial x} + \mathbf{j}\frac{\partial V}{\partial y} + \mathbf{k}\frac{\partial V}{\partial z}\right)$$

$$\vec{F} = -\mathbf{i}\frac{\partial V}{\partial x} - \mathbf{j}\frac{\partial V}{\partial y} - \mathbf{k}\frac{\partial V}{\partial z}$$

$$\vec{F} = -\mathbf{i}\frac{\partial(x^2 + xy + xz)}{\partial x} - \mathbf{j}\frac{\partial(x^2 + xy + xz)}{\partial y} - \mathbf{k}\frac{\partial(x^2 + xy + xz)}{\partial z}$$

$$\vec{F} = -\mathbf{i}\frac{\partial}{\partial x}(x^2 + xy + xz) - \mathbf{j}\frac{\partial}{\partial y}xy - \mathbf{k}\frac{\partial}{\partial z}xz$$

$$\vec{F} = -(2x + y + z)\mathbf{i} - \mathbf{j}x - \mathbf{k}x$$

Test If
$$\vec{F}$$
 is conservative or not

$$\vec{\nabla} \times \vec{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ -(2x+y+z) & -x & -x \end{vmatrix}$$

$$\vec{\nabla} \times \vec{F} = \mathbf{i} \left(\frac{\partial}{\partial y} (-x) - \frac{\partial}{\partial z} (-x) \right) - \mathbf{j} \left(\frac{\partial}{\partial x} (-x) - \frac{\partial}{\partial z} (-(2x+y+z)) \right) + \mathbf{k} \left(\frac{\partial}{\partial x} (-x) - \frac{\partial}{\partial y} (-(2x+y+z)) \right)$$

$$\vec{\nabla} \times \vec{F} = \mathbf{i} (0 - 0) - \mathbf{j} (-1 + 1) + \mathbf{k} (-1 + 1) = 0$$

Example 7: Find the potential energy for harmonic oscillator: a) two dimensions b) three dimensions

Solution:

a. Two dimensions

$$\vec{F} = -k_1 x \mathbf{i} - k_2 y \mathbf{j}$$

Conservative force $: \vec{F} = -\nabla V$

Test If \vec{F} is conservative or not

$$\vec{\nabla} \times \vec{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ -k_1 x & -k_2 y & 0 \end{vmatrix}$$

$$\vec{\nabla} \times \vec{F} = \mathbf{i} \left(\frac{\partial}{\partial y} (0) - \frac{\partial}{\partial z} (-k_2 y) \right) - \mathbf{j} \left(\frac{\partial}{\partial x} (0) - \frac{\partial}{\partial z} (-k_1 x) \right) + \mathbf{k} \left(\frac{\partial}{\partial x} (-k_2 y) - \frac{\partial}{\partial y} (-k_1 x) \right)$$

$$\vec{\nabla} \times \vec{F} = \mathbf{i} (0 - 0) - \mathbf{j} (0 - 0) + \mathbf{k} (0 - 0) = 0$$

$$\vec{F} = -\vec{\nabla}V = -\frac{dV_x}{dx}\,\mathbf{i} - \frac{dV_y}{dy}\,\mathbf{j}$$

$$\therefore \frac{dV_x}{dx} = k_1 x \implies dV_x = k_1 x dx \quad \text{for x-coordinate}$$

$$V_x = \int k_1 x \, dx \, = \, \frac{1}{2} k_1 x^2$$

$$\frac{dV_y}{dy} = k_2 y \implies dV_y = k_2 y dy \quad \text{for y- coordinate}$$

$$V_y = \int k_2 y dy = \frac{1}{2} k_2 y^2$$

$$V = V_x + V_y$$

$$\therefore V = \frac{1}{2} k_1 x^2 + \frac{1}{2} k_2 y^2$$

b. Three dimensions

$$F = -k_1 x \mathbf{i} - k_2 y \mathbf{j} - k_3 z \mathbf{k}$$

Conservative force $: \vec{F} = -\vec{\nabla}V$

$$\vec{F} = -\vec{\nabla}V = -\frac{dV_x}{dx}\,\mathbf{i} - \frac{dV_y}{dy}\,\mathbf{j} - \frac{dV_z}{dz}\,\mathbf{k}$$

$$\therefore \frac{dV_x}{dx} = k_1 x \Rightarrow dV_x = k_1 x dx \qquad for x-coordinate$$

$$V_x = \int k_1 x dx = \frac{1}{2} k_1 x^2$$

$$\frac{dV_y}{dy} = k_2 y \Rightarrow dV_y = k_2 y dy$$
 for y-coordinate

$$V_y = \int k_2 y dy = \frac{1}{2} k_2 y^2$$

$$\frac{dV_z}{dz} = k_3 z \Rightarrow dV_z = k_3 z dz$$

for z-coordinate

$$V_z = \int k_3 z dz = \frac{1}{2} k_3 z^2$$

$$V = V_x + V_y + V_z$$

$$\therefore V = \frac{1}{2} k_1 x^2 + \frac{1}{2} k_2 y^2 + \frac{1}{2} k_3 z^2$$

5.1 Introduction

It is very convenient in describing the motion of a particle, to use a coordinate system which, itself, is moving. A coordinate system fixed the motion of a projectile, although the earth is moving and rotating.

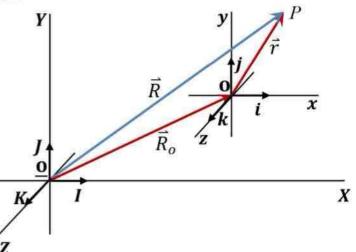
من الملائم جداً وصف حركة الجسيم، باستخدام نظام إحداثيات متحرك بحد ذاته. على سبيل المثال نظام الإحداثيات المستخدم لوصف حركة قذيفة مرتبط بالارض والتي تكون في حالة حركة انتقالية ودورانية في نفس الوقت (الأرض تتحرك وتدور بالوقت ذاته).

5.2 Translation of the Coordinate System

The simplest type of motion of the coordinate system is that of pure translation. In figure

OXYZ: the primary coordinate system (assumed fixed).

Oxyz: the moving coordinate system.



In the case of pure translation, the respective axes $\underline{O}X$ and Ox, and soon, remain parallel

 $OX \parallel Ox$

 $OY \parallel Oy$

 $OZ \parallel Oz$

P: is the particle position.

 \overline{R} : is the position vector of the particle P in the fixed system.

 \vec{r} : is the position vector of the particle in the moving system.

 \vec{R}_0 : is the displacement of the moving origin **<u>0</u>0**

حركة المحاور الانتقاليه هي ابسط انواع الحركات.

يمكن وصف حركة جسيمه مثل P بالنسبة لمنظومة المحاور الثابته (OXYZ) ومنظومة المحاور المتحركة (OXYZ). في حالة كون حركة المحاور انتقالية فقط عندها كل محور في منظومة المحاور الثابتة يوازي المحور المقابل له في منظومة المحاور المتحركة.

$$\vec{R} = \vec{r} + \vec{R}_o \quad \dots \dots \dots (1)$$

 \vec{R} : متجه موضع الجسيم P في المحاور الثابتة \vec{r} : متجه موضع الجسيم P في المحاور المتحركة \vec{R} 00: ازاحة نقطة الاصل المتحركة \vec{R}_0

fixed and moving system

Taking the first and second time derivatives gives

$$\frac{d\vec{R}}{dt} = \vec{V} = \vec{v} + \vec{V}_0 \dots \dots (2)$$
The velocity of particle P with respect to fixed and moving system
$$\frac{d^2\vec{R}}{dt^2} = \vec{A} = \vec{a} + \vec{A}_0 \dots \dots (3)$$
The acceleration of particle P with respect to

where: \vec{V}_o and \vec{A}_o are the velocity and acceleration respectively, of particle P of the moving origin.

 \vec{v} and \vec{a} are the velocity and acceleration respectively, of particle P in the moving system.

 $\vec{A}_o = 0$ For not accelerating moving system

 $\vec{A} = \vec{a} \dots \dots \dots (4)$ When moving system is not accelerating (not rotating)

المعادلة الاخيرة تبين ان التعجيل هونفسه لكل من النظام المتحرك والثابت وهي تصح في حالة كون النظام المتحرك لايدور (انعدام الحركة الدورانية في المحاور المتحركة)

5.3 Inertial Forces

$$\vec{F} = m\vec{A} \dots \dots (1)$$
 Newton's second law

When the equation of motion in the moving system is

$$\vec{F} = m(\vec{a} + \vec{A}_o) = m\vec{a} + m\vec{A}_o \dots \dots (2)$$

$$\vec{F} - m\vec{A}_o = m\vec{a} \dots \dots \dots (3)$$
 Equation of motion in the moving system

where: $(-m\vec{A}_0)$ called the *inertial term*

we can write "
$$\vec{F}$$
" = $m\vec{a}$

Inertial terms in the equations of motion is sometimes called *inertial forces* or *fictitious forces*. Such "forces" are not due to interactions with other physical bodies, rather, results from the acceleration of the reference system. Inertial

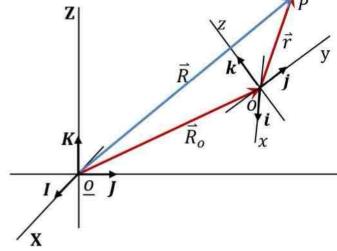
terms are present if a noninertial coordinate system is used to describe the motion of a particle.

ان حد القصور الذاتي (Inertial terms) في معادلات الحركة يدعى أحيانا بالقوى الخاملة ، أو القوى الزائفة. مثل هذه "القوى" لا تنتج من تفاعل الجسم P مع الاجسام الاخرى بأي نوع من انواع القوى الاعتيادية، بل ينتج من تسارع النظام المرجعي (reference system).

ان النظام المرجعي القصوري هو ذلك النظام الذي لا تتضمن معادلة حركته اي حد قصوري (Inertial terms)

5.4 General Motion of the Coordinate System

Now consider the references system undergoes both translation and rotation relative to inertial system as in figure.



 \vec{R} : is the position vector of the particle P in the inertial system.

 \vec{r} : is the position vector of the particle in the moving system.

 \vec{R}_0 : is the displacement of the moving origin **00**

رض أن النظام المرجعي يتحرك حركة انتقالية ودور انية نسبة لنظام قصوري.

$$\vec{r} = ix + jy + kz \qquad \dots \dots \dots (1)$$

$$\vec{R} = \vec{R}_0 + ix + jy + kz \qquad \dots \dots (2)$$

By differentiating with respect to the time,

$$\frac{d\vec{R}}{dt} = \frac{d\vec{R}_0}{dt} + \mathbf{i}\dot{x} + \mathbf{j}\dot{y} + \mathbf{k}\dot{z} + x\frac{d\mathbf{i}}{dt} + y\frac{d\mathbf{j}}{dt} + z\frac{d\mathbf{k}}{dt} \dots \dots \dots (3)$$
Velocity of the particle relative to the moving system

Velocity due to rotation of the *OXYZ* coordinate

 $x\frac{di}{dt}+y\frac{dj}{dt}+z\frac{dk}{dt}$ تمثل سرعة الجسيم بالنسبة للمحاور المتحركة في حين ان الحدود $i\dot{x}+j\dot{y}+k\dot{z}$ دود $i\dot{x}+j\dot{y}+k\dot{z}$ عمثل سرعة المنظومة المتحركة (OXYZ) او السرعة الناتجة من دور ان المنظومة

 $\dot{\vec{r}} = i\dot{x} + j\dot{y} + k\dot{z}$ (4) Velocity of the particle relative to the moving system

لنفرض ان اتجاه الدوران له وحدة قيمة هي (λ) وان الانطلاق للدوران حول هذا المتجه هو (ω) فاذن $(\omega\lambda)$ هي السرعة الزاويه للمحاور الدائرة.

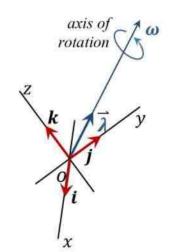
Let

 λ : be the direction of the axis of rotation of the *OXYZ* system.

 ω : be the angular speed of rotation about that axis.

As in figure

$\overrightarrow{\omega} = \omega \lambda \dots \dots (4)$ Angular velocity of the rotating coordinate system



The direction of the angular velocity vector is given by the right-hand rule as in the definition of the cross product.

The time derivatives of the basis vectors $(\frac{di}{dt}, \frac{dj}{dt}, \frac{dk}{dt})$ in term of the rotation $\vec{\omega}$, we can express $\frac{di}{dt}$ as the cross product of $\vec{\omega}$ and \vec{i}

$$\frac{di}{dt} = \overrightarrow{\omega} \times i \dots \dots (11)$$

Similarly

So the velocity of particle P, due to rotation of the fixed coordinates system.

$$\frac{d\vec{R}}{dt} = \frac{d\vec{R}_0}{dt} + i\dot{x} + j\dot{y} + k\dot{z} + \overrightarrow{\omega} \times \overrightarrow{r} \dots \dots \dots (13)$$

$$\frac{d\vec{R}}{dt} = \frac{d\vec{R}_0}{dt} + \vec{r} + \vec{\omega} \times \vec{r}$$

$$\vec{V} = \vec{V}_o + \vec{r} + \vec{\omega} \times \vec{r} \dots \dots (14)$$

The above eqn. express the relation between the time derivatives of the position vectors of a moving particle in two coordinate systems one system regarded as fixed, the other as moving and rotating. The term \vec{V}_o is due to translation of the moving system. In the case of pure rotation, it not presents.

المعادلة (14) تبين العلاقة بين المشتقات الزمنية لمتجهات الموقع لجسيم متحرك في نظامين إحداثيين، احدهما ثابتًا، والأخر يتحرك (ينتقل) ويدور. الحد \vec{V}_0 ظهر بسبب الحركة الانتقالية. في حالة كون الحركة دورانيه فقط فان هذا الحد لايظهر.

For any vector \vec{q}

$$\frac{d\vec{q}}{dt} = \vec{\dot{q}} + \vec{\omega} \times \vec{q}$$

where:

 \dot{q} is the time rate of change of \vec{q} in the rotating system $(i\dot{q}_x + j\dot{q}_y + k\dot{q}_z)$

 $\overrightarrow{\omega} \times \overrightarrow{q}$ is the time rate of change of \overrightarrow{q} arising from rotation of coordinate system $(q_x \frac{di}{dt} + q_y \frac{dj}{dt} + q_z \frac{dk}{dt})$

Let find the relation between the acceleration vectors, from eqn. (14)

بالامكان ايجاد العلاقة بين متجهات التعجيل في حالة الحركة الانتقالية والدورانية للمحاور الاحداثية، من المعادلة (14)

$$\frac{d\vec{R}}{dt} = \vec{V} = \vec{V}_o + \vec{r} + \vec{\omega} \times \vec{r}$$

$$\frac{d\vec{R}}{dt} = \vec{V}_o + (i\dot{x} + j\dot{y} + k\dot{z}) + (\vec{\omega} \times \vec{r})$$

$$\frac{d^2\vec{R}}{dt^2} = \dot{\vec{V}}_o + \frac{d}{dt}(i\dot{x} + j\dot{y} + k\dot{z}) + \frac{d}{dt}(\vec{\omega} \times \vec{r})$$

$$\vec{A} = \vec{A}_o + \frac{d}{dt} (\mathbf{i}\dot{x} + \mathbf{j}\dot{y} + \mathbf{k}\dot{z}) + \overrightarrow{\dot{\omega}} \times \vec{r} + \overrightarrow{\omega} \times \frac{d\vec{r}}{dt}$$

$$= \vec{A}_o + \mathbf{i}\ddot{x} + \dot{x}\frac{di}{dt} + \mathbf{j}\ddot{y} + \dot{y}\frac{dj}{dt} + \mathbf{k}\ddot{z} + \dot{z}\frac{dk}{dt} + \overrightarrow{\dot{\omega}} \times \vec{r} + \overrightarrow{\omega} \times \left[\mathbf{i}\dot{x} + \mathbf{j}y + \mathbf{k}\dot{z} + x\frac{di}{dt} + y\frac{dj}{dt} + z\frac{dk}{dt} \right]$$

$$= \vec{A}_{o} + i \ddot{x} + j \ddot{y} + k \ddot{z} + \dot{x} \frac{di}{dt} + \dot{y} \frac{dj}{dt} + \dot{z} \frac{dk}{dt} + \overrightarrow{\omega} \times \vec{r} + \overrightarrow{\omega} \times \left[\vec{r} + x(\overrightarrow{\omega} \times i) + y(\overrightarrow{\omega} \times j) + z(\overrightarrow{\omega} \times k) \right]$$

$$= \vec{A}_{o} + \vec{r} + \dot{x}(\overrightarrow{\omega} \times i) + \dot{y}(\overrightarrow{\omega} \times j) + \dot{z}(\overrightarrow{\omega} \times k) + \overrightarrow{\omega} \times \vec{r} + \overrightarrow{\omega} \times \left[\dot{r} + \overrightarrow{\omega} \times (ix + jy + kz) \right]$$

$$= \vec{A}_{0} + \vec{r} + \overrightarrow{\omega} \times (i\dot{x} + j\dot{y} + k\dot{z}) + \overrightarrow{\omega} \times \vec{r} + \overrightarrow{\omega} \times \left[\vec{r} + (\overrightarrow{\omega} \times \vec{r}) \right]$$

$$= \vec{A}_{0} + \vec{r} + \overrightarrow{\omega} \times \vec{r} + \overrightarrow{\omega} \times \vec{r} + \overrightarrow{\omega} \times \vec{r} + \overrightarrow{\omega} \times (\overrightarrow{\omega} \times \vec{r})$$

$$\vec{A} = \vec{A}_{o} + \vec{r} + 2\vec{\omega} \times \vec{r} + \overrightarrow{\omega} \times \vec{r} + \vec{\omega} \times (\vec{\omega} \times \vec{r}) \dots \dots (15)$$

Eqn.(15) giving the acceleration in the fixed system in terms of the position, velocity, and acceleration in the rotating system.

 \vec{A}_o : Acceleration of the moving system

 \vec{r} : Acceleration of particle in the rotating system

 $2\vec{\omega} \times \dot{r}$: Coriolis acceleration

 $\vec{\omega} \times r$: Transverse acceleration

 $\overrightarrow{\omega} \times (\overrightarrow{\omega} \times \overrightarrow{r})$: Centrifugal acceleration

المعادلة (15) تمثل التعجيل في النظام الثابت من حيث الموقع والسرعة والتعجيل في النظام المتحرك (يدور).

A: تعجيل النظام المتحرك

تعجيل الجسيمة في النظام الدوراني: $ec{ ilde{r}}$

تعجيل كوريولس : $2\overline{\omega} imes \dot{r}$

التعجيل المستعرض : $\overrightarrow{\omega} imes r$

تعجيل القوة الطاردة المركزيه (الجذب المركزي) وهي تتجه دائماً نحو محور الدوران وتكون على المحور.

Example:

A wheel of radius b rolls along the ground with constant forward speed V_o . Find the acceleration, relative to the ground, of any point on the rim.

عجلة نصف قطرها b تتدحرج على سطح الارض بسرعة ثابتة V_0 . جد التعجيل لأية نقطه على محيط العجلة بالنسبة للارض لاية نقطة على الحافة.

Solution:

Let us choose a coordinate system fixed to the rotating wheel, and let the moving origin be at the center with the x-axis passing through the point in question,

يتضح من السؤال ان العجلة تمثل حالة نظام احداثيات يمتلك سرعة خطية وسرعة دورانية (يتحرك ويدور) في حين انها تتحرك على سطح ثابت هو سطح الارض. اي ان هناك نظامين احداثيين المتحرك فقط والنظام الاخر يتحرك ويدور. لحل السؤال يجب او لا تحديد نظام احداثيات ثابت للعجلة الدائرة بحيث يكون مركز العجلة فيه هو نقطة الاصل والذي يمتلك سرعة الخطية V_0 .

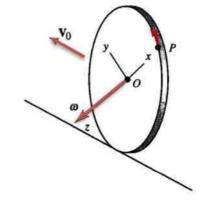
Position vector is: $\vec{r} = ib$

Velocity vector is: $\vec{r} = 0$

Acceleration vector is: $\vec{r} = 0$

The angular velocity vector is given by:

$$\overrightarrow{\omega} = oldsymbol{k}\omega = oldsymbol{k} rac{V_o}{b}$$
 السرعة الزاوية $= rac{ ext{NidME}}{ ext{comb}}$ السرعة الزاوية



for the choice of coordinates shown; therefore, all terms in the expression for acceleration vanish except the centripetal term:

حدود التعجيل في معادلة التعجيل تتلاشى ماعدا حد الجذب المركزي.

$$\overline{\dot{\omega}} = 0 \leftarrow نظلاق ثابت $V_{\alpha}$$$

$$\vec{A} = \vec{r} + 2\vec{\omega} \times \vec{r} + \vec{\omega} \times \vec{r} + \vec{\omega} \times (\vec{\omega} \times \vec{r}) + \vec{A}_o$$

$$= 0 + 0 + 0 + \overrightarrow{\omega} \times (\overrightarrow{\omega} \times \overrightarrow{r}) + 0$$

$$= \vec{\omega} \times (\vec{\omega} \times \vec{r})$$

$$= \mathbf{k}\omega \times (\mathbf{k}\omega \times \mathbf{i}b)$$

$$= k \frac{V_o}{b} \times \left(k \frac{V_o}{b} \times ib \right) = k \frac{V_o^2}{b} \times (k \times i)$$

$$=\frac{{V_o}^2}{h}\mathbf{k}\times\mathbf{j}=\frac{{V_o}^2}{h}(-\mathbf{i})$$

ن $A = -i \frac{V_o^2}{b}$ is always directed toward the center of the rolling wheel. يكون دائماً باتجاه مركز العجلة الدائرة.

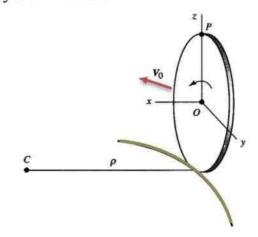
Example:

A bicycle travels with constant speed V_o around a track of radius ρ . What is the acceleration of the highest point on one of its wheels?

Solution:

Choose a coordinate system with origin at the center of the wheel and with the x-axis horizontal pointing toward the center of curvature C of the track. Rather than have the moving coordinate system rotate with the wheel, choose a system in which the z-axis remains vertical, the oxyz system rotates

ان الدراجة في حالة حركة انتقالية بسرعة V_0 وعجلاتها تدور حول مسار دائري نصف قطره ρ . نختار نظام احداثيات نقطة الاصل له تكون في مركز عجلة الدراجة، بحيث يكون محور x افقي ويؤثر باتجاه (نحو) مركز تكور الطريق (C). والمحور العمودي z يبقى عموديا حتى عند انحناء العجلة. عليه فان النظام (oxyz) يدور بسرعة زاويه مقدارها (oxyz)



angular velocity express as:

$$\vec{\omega} = k \frac{V_o}{\rho}$$

Acceleration of the moving origin \vec{A}_o is given by:

$$ec{A}_o = oldsymbol{i} rac{V_o^2}{
ho}$$
 تعجيل المركزي $= rac{N_o^2}{(1-N_o)^2}$ تعجيل المركزي

each point on the wheel is moving in a circle of radius b with respect to the moving origin, the *acceleration* in the (oxyz) system of any point on the wheel

is directed toward (o) and has magnitude $\frac{V_o^2}{b}$. Thus, in the moving system we

have

$$\vec{r} = -k \frac{{V_o}^2}{b}$$
 لأية نقطة على العجله تتجه نحو (o) وقيمته $(\frac{{V_o}^2}{b})$ وقيمته $(oxyz)$

for the point at the *top* of the wheel. Also, the *velocity* of this point in the moving system is given by:

$$\vec{\dot{r}} = -jV_o$$

في أعلى نقطة على العجلة

so the Coriolis acceleration is

$$2\vec{\omega} \times \vec{r} = 2\left(\frac{V_o}{\rho}\mathbf{k}\right) \times (-\mathbf{j}V_o)$$
$$= 2\frac{V_o^2}{\rho}\mathbf{i}$$

Because the angular velocity $\vec{\omega}$ is constant, the transverse acceleration is zero.

The centripetal acceleration is also zero because

$$\vec{\omega} \times \vec{r} = 0$$
 السرعة الزاويه $\vec{\omega}$ ثابته (حيث V_o ثابت) فان $\vec{\omega} = 0$ فان التعجيل المستعرض بكون صفر أ

وكذلك تعجيل الجذب المركزي = صفر

$$\vec{\omega} \times (\vec{\omega} \times \vec{r}) = \frac{V_o}{\rho} \mathbf{k} \times \left(\frac{V_o}{\rho} \mathbf{k} \times b \mathbf{k}\right) = 0 \qquad (\mathbf{k} \times \mathbf{k}) = 0$$

The net acceleration, relative to the ground, of the highest point on the wheel is

التعجيل الكلي في اعلى نقطة على العجلة

$$\vec{A} = \vec{r} + 2\vec{\omega} \times \vec{r} + \vec{\omega} \times \vec{r} + \vec{\omega} \times (\vec{\omega} \times \vec{r}) + \vec{A}_o$$

$$= -\mathbf{k} \frac{V_o^2}{b} + 2 \frac{V_o^2}{\rho} \mathbf{i} + 0 + 0 + \frac{V_o^2}{\rho} \mathbf{i}$$

$$\vec{A} = 3 \frac{V_o^2}{\rho} \mathbf{i} - \frac{V_o^2}{b} \mathbf{k}$$

5.5 Dynamics of a Particle in a Rotating Coordinate System

The fundamental equation of motion of a particle in an inertial frame of reference is

$$\vec{F} = m \frac{d^2 \vec{R}}{dt^2} \dots \dots (1)$$

 \vec{F} : is the physical force acting on the particle

$$\frac{d^2\vec{R}}{dt^2} = \vec{A} = \vec{r} + 2\vec{\omega} \times \vec{r} + \vec{\omega} \times \vec{r} + \vec{\omega} \times (\vec{\omega} \times \vec{r}) + \vec{A}_o$$

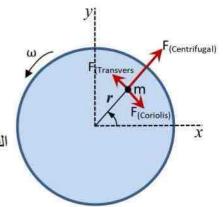
The equation of motion in a noninertial frame of reference as

$$\therefore F - m\vec{A}_o - 2m \vec{\omega} \times \vec{r} - m\vec{\omega} \times \vec{r} - m\vec{\omega} \times (\vec{\omega} \times \vec{r}) = m\vec{r} \dots \dots (2)$$

Eqn. (2) represents the dynamical equation of motion of a particle in a noninertial frame of reference subjected to both real, physical forces as well as those inertial forces that appear as a result of the acceleration of the noninertial frame of reference.

معادلة (2) تمثل معادلة الحركة لجسيم في احداثيات غير قصورية يخضع لقوى فعلية وفيزيائية اضافة الى قوى القصور الذاتي التي تظهر كنتيجة لتسارع الإطار المرجعي غير القصوري.

$$ec F = (Physical\ force)$$
 قوة فيزيائية $ec F_{cor} = -2mec \omega imes ec r$ (Coriolis force) قوة كورپولس قوة كورپولس $ec F_{trans} = -mec \omega imes ec r$ (Transverse force) القوة المستعرضة $ec F_{cent} = -mec \omega imes (ec \omega imes ec r)$ (Centrifugal force) القوة الطاردة المركزية



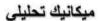
حد القصور الذاتي (Inertial term due to translational of coordinate system) حد القصور الذاتي

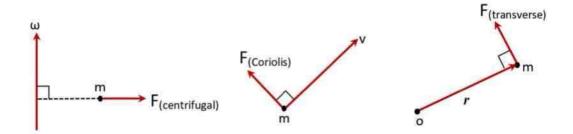
 $-mA_0$ تمثل القوة الناتجه من دوران منظومة المحاور (باتجاه منظومة الاحداثيات المنتقلة). قوى القصور الذاتي ناتجه من الصفات الذاتيه للمادة اكثر من كونها ناتجه من تأثير الاجسام الاخرى.

"F" =
$$m\vec{r} = m(\mathbf{i}\ddot{x} + \mathbf{j}\ddot{y} + \mathbf{k}\ddot{z}) \dots \dots (3)$$

where

"F" =
$$\vec{F}_{cor}$$
 + \vec{F}_{trans} + \vec{F}_{cent} - mA_o (4)





- 1. The Coriolis force is particularly interesting. It is present only if a particle is moving in a rotating coordinate system. Its direction is always perpendicular to the velocity vector of the particle in the moving system. The Coriolis force thus seems to deflect a moving particle at right angles to its direction of motion.
 - This force is important in computing the trajectory of a projectile.
 - Coriolis effects are responsible for the circulation of air around high- or low-pressure systems on Earth's surface. In the case of a high-pressure area, as air spills down from the high, it flows outward and away, deflecting toward the right as it moves into the surrounding low, setting up a clockwise circulation pattern. In the Southern Hemisphere the reverse is true.
- 2. The *transverse force* is present only if there is an angular acceleration (or deceleration) of the rotating coordinate system. This force is always perpendicular to the radius vector \mathbf{r} in the rotating coordinate system.
- 3. The centrifugal force is the familiar one that arises from rotation about an axis. It is directed outward away from the axis of rotation and is perpendicular to that axis.

1. قوة كوريولس تظهر فقط عندما يتحرك الجسم تحت الشروط الدورانيه للمنظومة وتتجه دائماً بشكل عمودي على متجه السرعة للجسم في نظام الاحداثيات المتحرك. لذلك فان هذه القوة تميل الى جعل الجسم المتحرك يحيد عن مساره بزوايا عمودية على مساره.

من التطبيقات المهمة لهذه القوة:

- حساب مسار القذيفة trajectory of projectile
- تأثيرات كوريولس المسؤولة عن دوران الرياح في المناطق ذات الضغط العالي والواطيء على سطح الارض ففي حالة مناطق الضغط العالي تحاول الرياح ان تجري بأتجاه اليمين في نصف الكرة الجنوبي والعكس صحيح.
- 2. القوة المستعرضة تظهر فقط عندما يتواجد تعجيل زاوي لحركة منظومة الاحداثيات الدورانيه وهذه القوة تكون ايضاً عموديه على قيمه نصف القطر (\vec{r}) .
- 3. القوه الطاردة تنشأ من الدوران حول محور وهذه القوه تتجه دائماً بعيداً عن محور الدوران وتكون عمودية عليه.

Example:

A bug moving out ward with constant speed u along the spoke of a wheel, which is rotating with constant angular velocity ω about a vertical axis, find all the forces acting on the bug. Then find how far the bug can crawl before it starts to slip, given the coefficient of friction μ between the bug and the spoke.

حشرة (بعوضة) تتحرك (تزحف) بانطلاق ثابت u على شعاع (سلك) عجله تدور بسرعة زاويه ثابته ω حول محور عمودي. جد كل القوى التي تؤثر عليها. ثم احسب بعد الحشرة قبل ان تبدأ بالانزلاق علماً ان معامل الاحتكاك بين الحشرة والشعاع هو μ .

Solution

First, let us choose a coordinate system fixed on the wheel, and let the x-axis point along the spoke in question.

نختار منظومة احداثيات ثابته على العجله ونفرض المحور (x) يتجه على طول اتجاه حركة الجسيم .

$$u = constant \implies \vec{r} = 0$$

for the velocity and acceleration of the bug as described in the rotating system. If we choose the *z*-axis to be vertical, then

$$\vec{\omega} = k\omega \implies \vec{\omega} = 0$$
 اذا اخترنا المحور (z) شاقوليا (عمودي)

The various forces are then given by the following:

$$F_{cor} = -2m\vec{\omega} \times \vec{r}$$

$$= -2m(\mathbf{k}\omega) \times (\mathbf{i}u) = -2m\omega u(\mathbf{k} \times \mathbf{i})$$

$$F_{cor} = -2m\omega u\mathbf{j}$$

$$F_{tran} = -m\vec{\omega} \times \vec{r} = 0$$

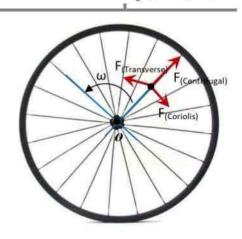
$$F_{cent} = -m\vec{\omega} \times (\vec{\omega} \times \vec{r})$$

$$= -m(\mathbf{k}\omega) \times [(\mathbf{k}\omega) \times (\mathbf{i}x)]$$

$$= -m\omega^{2}[\mathbf{k} \times (\mathbf{k} \times \mathbf{i}x)]$$

$$= -m\omega^{2}[\mathbf{k} \times \mathbf{j}x]$$

$$= m\omega^{2}x\mathbf{i}$$



$$\vec{F} - m\vec{A}_0 - 2m\vec{\omega} \times \vec{r} - m\vec{\omega} \times \vec{r} - m\vec{\omega} \times (\vec{\omega} \times \vec{r}) = m\vec{r}$$

$$\vec{F} - 0 - 2m\omega u \vec{j} - 0 + m\omega^2 x \vec{i} = 0$$

$$F = 2m\omega u \mathbf{j} - m\omega^2 x \mathbf{i}$$

Here *F* is the real force exerted on the bug by the spoke

Because the force of friction \vec{F} has a maximum value of slipping starts when

$$ec{F}=\mu mg$$
 ان قوة الاحتكاك تكون في قيمتها العظمى عندما

$$|\vec{F}| = \mu mg = [(2m\omega u)^2 + (m\omega^2 x)^2]^{1/2}$$

$$\mu^2 m^2 g^2 = (2m\omega u)^2 + (m\omega^2 x)^2$$

$$(m\omega^2 x)^2 = \mu^2 m^2 g^2 - (2m\omega u)^2$$

$$m^2 \omega^4 x^2 = \mu^2 m^2 g^2 - 4m^2 \omega^2 u^2$$

$$m^2 \omega^4 x^2 = m^2 (\mu^2 g^2 - 4\omega^2 u^2)$$

$$x^2 = \frac{m^2 (\mu^2 g^2 - 4\omega^2 u^2)}{m^2 \omega^4}$$

$$x = \frac{(\mu^2 g^2 - 4\omega^2 u^2)^{1/2}}{\omega^2}$$
 The discontinuation of the properties of the properties

The distance the bug can crawl before slipping وهي المسافة التي تقطعها الحشرة قبل ان تبدأ بالانز لاق.