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ELECTROMAGNETIC THEORY

ELECTROMAGNETIC THEORY
COURSE OBJECTIVES:

1) To introduce the student to the coordinate system and its implementation to electro
magnetics.

2) To elaborate the concept of electromagnetic waves and their practical applications.

3) Tostudy the propagation, reflection, and refraction of plane waves in different media.

4) To Study time varying Maxwell equations and their applications in electromagnetic
problems

5) Demonstrate the reflection and refraction of waves at boundaries

Syllabus of Electromagnetic theory

CHAPTER ONE : (5 hours)

Vector Analysis & Co-ordinate system: Vector analysis- Representation, operations-Dot product
and cross product, Basics of coordinate system- rectangular, cylindrical and spherical co-ordinate
systems.

Electrostatics one: Coulomb’s Law, Electric Field Intensity - Fields due to Different Charge
Distributions, Electric Flux Density; Illustrative Problems.

CHAPTER TWO: (5 hours)

Electrostatics two: Gauss Law and Applications, Electric Potential, Relations Between E and V,
Maxwell's Equations for Electrostatic Fields, Dielectric Constant, Isotropic and Homogeneous
Dielectrics, Continuity Equation, Relaxation Time, Poisson's and Laplace's Equations, Boundary
conditions-conductor-Dielectric and Dielectric-Dielectric; Illustrative Problems.

CHAPTER THREE: (5 hours)

Magneto statics: Biot - Savart's Law , Ampere's Circuital Law and Applications, Magnetic Flux
Density, Maxwell's Equations for Magneto static Fields, Magnetic Scalar and Vector Potentials,
Ampere’s Force law , Faraday's Law, Displacement Current Density, Maxwell's Equations for
timevarying fields, Illustrative Problems.

CHAPTER FOUR: (5 hours)

EM Wave Characteristics-1 : Wave Equations for Conducting and Perfect Dielectric Media,
Uniform Plane Waves - Definition, Relation Between E & H, Wave Propagation in Lossless and
Conducting Media, Wave Propagation in Good Conductors and Good Dielectrics, Illustrative
Problems.

CHAPTER FIVE: (5 hours)

EM Wave Characteristics — I1: Reflection and Refraction of Plane Waves — Normal incidence
for both perfect Conductors and perfect Dielectrics, Brewster Angle, Critical Angle and Total
Internal Reflection, Surface Impedance, Poynting Vector and Poynting Theorem — Applications,
Illustrative Problems.
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chapter one

Vector analysis

CHAPTER ONE
Contents

Vector Analysis & Co-ordinate system

» Vector analysis
e Representation
e Operations-Dot product and cross product

> Basics of coordinate system
e Rectangular coordinate system
e Cylindrical coordinate system
e Spherical coordinate system

Electrostatics one:

» Coulomb’s Law
» Electric Field Intensity
e Fields due to Different Charge Distributions
» Electric Flux Density
> Problems.
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Vector Analysis

Introduction:
Vector Algebra is a part of algebra that deals with the theory of vectors and vector spaces.

Most of the physical quantities are either scalar or vector quantities.

Scalar Quantity:

Scalar is a number that defines magnitude. Hence a scalar quantity is defined as a
quantity that has magnitude only. A scalar quantity does not point to any direction i.e. a
scalar quantity has no directional component.

For example when we say, the temperature of the room is 30° C, we don‘t specify the direction.
Hence examples of scalar quantities are mass, temperature, volume, speed etc.
A scalar quantity is represented simply by a letter — A, B, T, V, S.

Vector Quantity:

A Vector has both a magnitude and a direction. Hence a vector quantity is a
quantity that has both magnitude and direction.

Examples of vector quantities are force, displacement, velocity, etc.
9 73w Y
A,V,B,F

A vector quantity is represented by a letter with an arrow over it or a bold letter.

Unit Vectors:

When a simple vector is divided by its own magnitude, a new vector is created known as
the unit vector. A unit vector has a magnitude of one. Hence the name - unit vector.

A unit vector is always used to describe the direction of respective vector.
pa—
A i
= — =% ‘A. = |L.X| “]A
Al ‘

Hence any vector can be written as the product of its magnitude and its unit vector. Unit VVectors
along the co-ordinate directions are referred to as the base vectors. For example unit vectors
along X, Y and Z directions are ax, ay and az respectively.

Position Vector / Radius Vector (OP):

A Position Vector / Radius vector define the position of a point(P) in space relative to
the origin(O).Hence Position vector is another way to denote a point in space.

OP: de +ya_y + Za_z
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Displacement Vector
Displacement Vector is the displacement or the shortest distance from one point to another.

Vector Multiplication

When two vectors are multiplied the result is either a scalar or a vector depending on how
they are multiplied. The two important types of vector multiplication are:

e Dot Product/Scalar Product (A.B)
e Cross product (A x B)

1. DOT PRODUCT (A. B):

Dot product of two vectors A and B is defined as:
A.B=|&| | B| cos8us

Where 645 is the angle formed between A and B.
Also B4 ranges from0tomie.0<BOap<m
The result of A.B is a scalar, hence dot product is also known as Scalar Product.

Properties of Dot Product:
1. IfA= (Ax, Ay, Az) and B= (Bx, By, Bz) then
A B = AxBx + AyBy + Asz

2. A.B =|A||B|, if cosfas=1 whichmeans 0ag=0°

This shows that A and B are in the same direction or we can also say that A and B are
parallel to each other.

3. AT =-|A||B|, if cos 845 =-1 which means 645 = 180°.
This shows that A and B are in the opposite direction or we can also say that A and B are
antiparallel to each other.

4. A B=0,if cos 845=0 which means 845 = 90°.
This shows that A and B are orthogonal or perpendicular to each other.

5. Since we know the Cartesian base vectors are mutually perpendicular to each other, we have
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2. Cross Product (A X B):
Cross Product of two vectors A and B is given as:
AXB= | & | B| sin™

Where 64pis the angle formed between A and B and a is a unit vector normal to both A and B.
Also 0 ranges from O towi.e. 0 <6045 m

The cross product is an operation between two vectors and the output is also a vector.

Properties of Cross Product:
L IfA= (Ax, Ay, Az) and B = (Bx, By, Bz) then,

a, ay a,

A*B = "&X A‘." .‘-\z

B, B, B

X 14 z
The resultant vector is always normal to both the vector A and B.

2 AXB=0,ifsinB4p =0 which means 645 =0° or 180°;
This shows that A and B are either parallel or antiparallel to each other.

3. AXB=| 4| | B, if sin 645 = 0 which means 645 = 90°.
This shows that A and B are orthogonal or perpendicular to each other.

4, Since we know the Cartesian base vectors are mutually perpendicular to each other, we have
axXax=ayXay=a,Xa;=0
_axX_ay :_az ,_ay X_az - _ax ) _azx_ax :_ay
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CO-ORDINATE SYSTEMS:

Co-Ordinate system is a system of representing points in a space of given dimensions by
coordinates, such as the Cartesian coordinate system or the system of celestial longitude and
latitude.

In order to describe the spatial variations of the quantities, appropriate coordinate system is
required. A point or vector can be represented in a curvilinear coordinate system that may be
orthogonal or non-orthogonal. An orthogonal system is one in which the coordinates are mutually
perpendicular to each other.

The different co-ordinate systems available are:
e Cartesian or Rectangular co-ordinate system.(Example: Cube, Cuboid)

e Circular Cylindrical co-ordinate system.(Example : Cylinder)

e Spherical co-ordinate system. (Example: Sphere)
The choice depends on the geometry of the application.

A set of 3 scalar values that define position and a set of unit vectors that define direction form
a co-ordinate system. The 3 scalar values used to define position are called co-ordinates. All
coordinates are defined with respect to an arbitrary point called the origin.

1. Cartesian Co-ordinate System / Rectangular Co-ordinate System (x,y,z)

A Vector in Cartesian system is represented as (Ax, Ay, Az) Or
A=Axax+Aya, + A
Where “a, , andgare the unit vectors in X, y, z direction respectively.
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Range of the variables:

It defines the minimum and the maximum value that x, yand z can have in Cartesian system.
-0 < X,Y,Z <o

Differential Displacement / Differential Length (dl):

It is given as

d = d.x_ax + dyay + dZaZ

Differential length for a line parallel to x, y and z axis are respectively given as:

dl = dxax---( For a line parallel to x-axis).
dl = dya, ---(For a line Parallel to y- axis).
dl = dza, ---( For a line parallel to z-axis).

If there is a wire of length L in z-axis, then the differential length is given as dl = dz a,. Similarly
if the wire is in y-axis then the differential length is given as dl = dy ay.

Differential Normal Surface (ds):

Differential surface is basically a cross product between two parameters of the surface.
The differential surface (area element) is defined as

ds =dsaw
Whereg is the unit vector perpendicular to the surface.

For the 1st figure,

z

’ ds=dydzq

e [l
, &z 9

2nd figure,
’ o ‘8= dxdzg

3rd figure,
ds= dxdya,

Differential VVolume:

The differential volume element (dv) can be expressed in terms of the triple product.
dv =dxdydz
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Differential length. area, and volume in

Cartesian coordinates.

2. Circular Cylindrical Co-ordinate System

A Vector in Cylindrical system is represented as (Ar, Ao, Az) or
14-: Ar_ar + A(zya(z) + Az_az

Wherea, @ and @, are the unit vectors inr, ® and z directions respectively.

The physical significance of each parameter of cylindrical coordinates:

1. The value r indicates the distance of the point from the z-axis. It is the radius of the
cylinder.

2. The value @, also called the azimuthal angle, indicates the rotation angle around the z-
axis. It is basically measured from the x axis in the x-y plane. It is measured anti
clockwise.

The value z indicates the distance of the point from z-axis. It is the same as in the
Cartesian system. In short, it is the height of the cylinder.
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Range of the variables:

It defines the minimum and the maximum values of r, @ and z.

-

t’

Figure shows Point P and Unit vectors in Cylindrical Co-ordinate System.

Differential Displacement / Differential Length (dI):

It is given as

d=drar + rdga, + dza;

Differential length for a line parallel to r, ® and z axis are respectively given as:

dl = dra----( For a line parallel to r-direction).
dl =rd@a, ---(For a line Parallel to ®-direction).
dl = dza, ---( For a line parallel to z-axis).

Differential Normal Surface (ds):

Differential surface is basically a cross product between two parameters of the surface.
The differential surface (area element) is defined as

“ds= dsan
Wherea, is the unit vector perpendicular to the surface.

This surface describes a circular disc. Always remember- To define a circular disk we
need two parameter one distance measure and one angular measure. An angular parameter
will always give a curved line or an arc.

In this case d® is measured in terms of change in arc.

Arc is given as: Arc=radius x angle
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ds = rdrd@a,
ds = drdza,
ds =rdrd@ay

Differential VVolume:

The differential volume element (dv) can be expressed in terms of the triple product.
dv =rdrdedz

3. Spherical coordinate System:

Spherical coordinates consist of one scalar value (r), with units of distance, while the other two
scalar values (0, @) have angular units (degrees or radians).

A Vector in Spherical System is represented as (Ar,Ae, Aa) OF
A= Ar_ar +A9_a9 +A(p_a(p
Where'a; ¢ anda, are the unit vectors in r, 6 and ® direction

respectively. The physical significance of each parameter of spherical
coordinates:

1. The value r expresses the distance of the point from origin (i.e. similar to
altitude). It is the radius of the sphere.

2. Theangle 6 is the angle formed with the z- axis (i.e. similar to latitude). It is also
called the co-latitude angle. It is measured clockwise.

3. The angle @, also called the azimuthal angle, indicates the rotation angle around the z-
axis (i.e. similar to longitude). It is basically measured from the x axis in the x-yplane.
It is measured counter-clockwise.

Range of the variables:

It defines the minimum and the maximum value that r, 6 and v can have in spherical co-ordinate
system.

0<r<ow
0<6<nm
0<d<2n
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Differential length:
It is given as
d=dra +rdfa + rsinf dpa

Differential lengths for a line parallel to r, 6 and ® axis are respectively given as:
dl = dira--(For a line parallel to r axis)
dl = rd6 ae---( For a line parallel to 0 direction)

dl = rsin 8 dga, --(For a line parallel to ® direction)

Differential Normal Surface (ds):

Differential surface is basically a cross product between two parameters of the surface.
The differential surface (area element) is defined as

“ds= dSay
Wheregq is the unit vector perpendicular to the surface.

“ds = rdrd6a,

“ds=r2sin6 dedbfar

ds=rsinfdrdpag

Differential Volume:

The differential volume element (dv) can be expressed in terms of the triple product.
dv=r2sin 8 drdedf
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Coordinate transformations:

Coordinate transformations

Transformation

Coordinate Variables

Unit Vectors

Vector Components

Cartesian to
cylindrical

cos¢+$’sin¢
Xsing + ycos

Ar — A.(COSQ” +A)'Sin¢
A¢ = —AxSiﬂ¢ +A_y('05(b
A; =A;

Cylindrical to
Cartesian

m¢+0cos¢

Ar =A; 008 —Apsing
Ay =Arsing + Ay oS¢
A; =A;

Cartesian to
spherical

/%)

=xsm9cos¢
+¥sin@sinp +2zcosh
8 = kcosfcosh
+¥cos@sing —Zsinf
6 = —Xsing + ycos¢

Ap = A;Sin@cos ¢
+Aysinfsin¢ +A;cos 6
Ag = AycosBcos
+ Aycos Bsing — A;sin 6
Ay = —Aysin g 4 Aycos ¢

Spherical to
Cartesian

X=Rsm6cos¢

= RsinBsma

Rsm6¢os¢

+0cosOcos¢ ¢smqs

f{smesmqy

+0c0595m¢+¢cos¢
7 =Rcosf —Bsind

A =Agsinfcos g
+Agc056c0sh—Aysing
Ay = Agsinfsin ¢
+AgC0ossing +Aycos0
A; = Apcosf —Agsin 6

Cylindrical to
spherical

ﬁ I'sinf+zcosh
0 rcosO Z5in@

=0

Ag = A5 6+ A cosb
Ag = Arcosb —A;sinb
Ap =Ag

Spherical to
cylindrical

r Rsm0+6c059

¢ ¢ )
7 =Rcosd —0sin6

A, =Apsm B +Agcosf
A; = Apcosf —Agsin 6
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Vector relations in the three common coordinate systems.

Cartesian
Coordinates

Cylindrical
Coordinates

Spherical
Coordinates

Coordinate variables

X2

1.2

R.6.¢

Vector representation A =

XA+ ¥Ay + 24;

BAr +0dy +24;

ﬁAR + 6A9 + ;AQ‘

Magnitudeof A |A|=

A+ A +A]

(A +A5+AL

+f A2 2 4 A2

X —
Position vector  OP) =

X+ +22,
for P(x1,y1.71)

in+12z,

RR;,
for P(Ry,61,61)

Base vectors properties

fk=ff=12=1

$§=f2=2%=0
ix§=1
Fxi-%
ixi=§

for P(r1, 41,21

R-R=0-0=¢-0=
R6=0-9=9-R=0
ﬁx0=¢
Oxo=R
dxR=0

Dot product A-B=

AB,+A,B,+A.B,

AB,+AsBy +AB,

ApBg+AgBg +AQB¢.

Crossproduct AxB=

X ¥ 2
Ay Ay A;

B, By B

Pog 2
A Ay A
B, B, B

R 0 ¢
AR Ag Ay
Br By By

Differential length dl=

Xdx+¥dy+1dz

Fdr+ordp+idz

RGR+6R d0 +¢Rsin b do

Differential surface areas

ds, =Xdydz
dsy=ydxdz
ds; =7 dxdy

ds, =1rd¢ dz
dss = ¢ drdz
dS; = irdrdd‘)

dsg = RR?sin6 df d¢
dsg = ORsin 6 dR d¢
dss =R dR d6

Differential volume dV =

dxdydz;

rdrd¢dz

R*sinf dRd6 do
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Del operator:

Del is a vector differential operator. The del operator will be used in for differential operations
throughout any course on field theory. The following equation is the del operator for different
coordinate systems.

0

| A
x o 0 S
A F—l b —Al, SV
ox oy’ ez |
0 . 1 0 . 0 .
&, +———llgt——ii,

op P og 0z

8 x 18 5 1 @ »
el Pl e— a,
or r 06 rsmé@ og

Gradient of a Scalar:

« The gradient of a scalar field, V, is a vector that represents both the magnitude and the
direction of the maximum space rate of increase of V.

VV = (:I a,+ gj/—c?‘. + ('iT a, =VV__.

ox oy - 0Oz '

« To help visualize this concept, take for example a topographical map. Lines on the map
represent equal magnitudes of the scalar field. The gradient vector crosses map at the location
where the lines packed into the most dense space and perpendicular (or normal) to them. The
orientation (up or down) of the gradient vector is such that the field is increased in magnitude
along that direction.

-Fundamental properties of the gradient of a scalar field
— The magnitude of gradient equals the maximum rate of change in V per unit distance

— Gradient points in the direction of the maximum rate of change inV
— Gradient at any point is perpendicular to the constant V surface that passes through that
point
— The projection of the gradient in the direction of the unit vector a, is
_ . o VPea
and is called the directional derivative of V along a. This is the rate of change of V
in the direction of a.

—If Aisthe gradient of V, then V is said to be the scalar potential of A.
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Divergence of a Vector:
« The divergence of a vector, A, at any given point P is the outward flux per unit volume as
volume shrinks about P.
- . f.:l-dg
divd=V-4=1lm ==
Av—>0 Ay
Divergence Theorem:
- The divergence theorem states that the total outward flux of a vector field, A, through the
closed surface, S, is the same as the volume integral of the divergence of A.

« This theorem is easily shown from the equation for the divergence of a vector field.

A= A4a, + 4,0, + 4,4,

- . b 4.ds
divd=V-4=lim =*—
Av >0 A‘-

.[V-fld\‘ =£ld§

Curl of a Vector:

The curl of a vector, A is an axial vector whose magnitude is the maximum circulation of A
per unit area as the area tends to zero and whose direction is the normal direction of the area
when the area is oriented to make the circulation maximum.

-Curl of a vector in each of the three primary coordinate systems are,

a, a, a,

- . 5 8| [a4. @], aa a4, [0t
Cartesian VxA= . A_:{____J},‘{___ "}f’ﬁ[.

ov 0z ox 0z

Cylindrical Vx4=
P,

a, ra, rsinéa,
=y A
. vid-—1 (9 ¢ @
Spherical 1 sm@|or 00  0¢
4, rdy rsméd,

r

o5, 1 [a(.aﬁsme)_a%} 1{@(;-_%) 1 a.q,}g[@_g%

o —(‘I'__
rsin@| 06 o | " r| or sin6 o4 or 06

ag
I
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Stokes Theorem:

- Stokes theorem states that the circulation of a vector field A, around a closed path, L is equal
to the surface integral of the curl of A over the open surface S bounded by L. This theorem has
been proven to hold as long as A and the curl of A are continuous along the closed surface S of
a closed path L

« This theorem is easily shown from the equation for the curl of a vector field.
A= 4a,+4,4,+ 4,4,

, . faedl
curlA=VxA=| lim <£——
AS—0 Ab

§L:—1~d/‘ = i(v X ;-1)'d§

Classification of vector field: 7
The vector field, A, is said to be divergence less ( or solenoidal) if V-4 =0,

— Such fields have no source or sink of flux, thus all the vector field lines entering an enclosed
surface, S, must also leave it.

— Examples include magnetic fields, conduction current density under steady state, and
imcompressible fluids

— The following equations are commonly utilized to solve divergenceless field problems
V-4=0

§A-a5=[(v-dpw=0
F=VxA4
The vector field, A, is said to be potential (or irrotational) if V x A=0

— Such fields are said to be conservative. Examples include gravity, and electrostatic fields.
— The following equations are commonly used to solve potential field problems;

VxVV=0 §A4-dl =§ (Vx4)-dS =0

S

VxA=0 A=—VV
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Electrostatics one:
Introduction:

Electromagnetic theory is concerned with the study of charges at rest and in motion.
Electromagnetic principles are fundamental to the study of electrical engineering.
Electromagnetic theory is also required for the understanding, analysis and design of various
electrical, electromechanical and electronic systems.

Electromagnetic theory can be thought of as generalization of circuit theory. Electromagnetic
theory deals directly with the electric and magnetic field vectors whereas circuit theory deals
with the voltages and currents. Voltages and currents are integrated effects of electric and
magnetic fields respectively.

Electromagnetic field problems involve three space variables along with the time variable and
hence the solution tends to become correspondingly complex. Vector analysis is the required
mathematical tool with which electromagnetic concepts can be conveniently expressed and best
comprehended. Since use of vector analysis in the study of electromagnetic field theory is
prerequisite, first we will go through vector algebra.

Applications of Electromagnetic theory:

This subject basically consist of static electric fields, static magnetic fields, time-varying fields &
it’ applications. One of the most common applications of electrostatic fields is the deflection of a
charged particle such as an electron or proton in order to control it’s trajectory. The deflection is
achieved by maintaining a potential difference between a pair of parallel plates. This principle is
used in CROs, ink-jet printer etc. Electrostatic fields are also used for sorting of minerals for
example in ore separation. Other applications are in electrostatic generator and electrostatic
voltmeter.

The most common applications of static magnetic fields are in dc machines. Other
applications include magnetic deflection, magnetic separator, cyclotron, Hall Effect sensors,
magneto hydrodynamic generator etc.

Electrostatics is a branch of science that involves the study of various phenomena caused by
electric charges that are slow-moving or even stationary. Electric charge is a fundamental
property of matter and charge exist in integral multiple of electronic charge. Electrostatics as the
study of electric charges at rest.

The two important laws of electrostatics are
e Coulomb‘s Law.

e (Gauss‘s Law.

Both these laws are used to find the electric field due to different charge configurations.
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Coulomb‘s law is applicable in finding electric field due to any charge configurations whereas
Gauss‘s law is applicable only when the charge distribution is symmetrical.

Coulomb’s Law

Coulomb's Law states that the force between two point charges Qland Q2 is directly
proportional to the product of the charges and inversely proportional to the square of the distance
between them.

A point charge is a charge that occupies a region of space which is negligibly small compared to
the distance between the point charge and any other object.
Point charge is a hypothetical charge located at a single point in space. It is an idealized model

ofa particle having an electric charge.
e il

Mathematically, R? , Where k is the proportionality constant.

In S1units, Q1 and Q2 are expressed in Coulombs(C) and R is in meters.

1

k=
Force Fisin Newtons (N) and AT % jscalled the permittivity of free space.

(We are assuming the charges are in free space. If the charges are any other dielectric medium,

&, Z,

we will use £~ %% instead where % is called the relative permittivity or the dielectric

constant of the medium).

Therefore

—

As shown in the Figure 1 let the position vectors of the point charges Qland Q2 are givenby 1

— —

and "2 . Let ©iz represent the force on Q1 due to charge Q2.
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0
Fig 1: Coulomb's Law

: R - : .
The charges are separated by a distance of £ ’“1|. We define the unit vectors as

P (rﬂ _’"1) and > _ (rl_’"ﬂ)
12 R a1 R

el FelFrd w4 Le

4 =
Bodmg B *’3

Fiﬂ 4 RE
I : M R
12 can be defined as

e

Similarly the force on Q1 due to charge Q2 can be calculated and if i represents this force then

_— —

we can write 21 = "

When we have a number of point charges, to determine the force on a particular charge due to all
other charges, we apply principle of superposition. If we have N number of charges

Q1,Q2, Qn located respectively at the points represented by the position vectors 1,2 |

, the force experienced by a charge Q located at 7 is given by,

o Lo -
4??5'0;' - ‘*|3

r—F

A field is a function that specifies a particular physical quantity everywhere in a region.
Depending upon the nature of the quantity under consideration, the field may be a vector or a
scalar field. Example of scalar field is the electrostatic potential in a region while electric or
magnetic fields at any point is the example of vector field.

Static Electric Fields:

Electrostatics can be defined as the study of electric charges at rest. Electric fields have their
sources in electric charges. The fundamental & experimentally proved laws of electrostatics
are Coulomb’s law & Gauss’s theorem.
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Electric Field:

Electric field due to a charge is the space around the unit charge in which it experiences a force.
Electric field intensity or the electric field strength at a point is defined as the force per unit
charge.

Mathematically,
E=F/Q
OR

F=EQ
The force on charge Q is the product of a charge (which is a scalar) and the value of the
electric field (which is a vector) at the point where the charge is located. That is

—_—

F-tml ®-%
Q—}DQ or, Q

The electric field intensity E at a point r (observation point) due a point charge Q located at r

(source point) is given by:

—_—

For a collection of N point charges Q1,Q2,
intensity at point ' is obtained as

z_ | igilz?—?h
4 |

e,

_ ;;’3
The expression (6) can be modified suitably to compute the electric filed due to a continuous

distribution of charges.

In figure 2 we consider a continuous volume distribution of charge (t) in the region denoted as

the source region.

For an elementary charge 4@ = olr)dv’ , 1.e. considering this charge as point charge, we can

write the field expression as:

e dQr-r") _ e dvir-r)

e, |r—r"3 47re, |r—r"3
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Source region

Fig 2: Continuous VVolume Distribution of Charge

When this expression is integrated over the source region, we get the electric field at the point P
due to this distribution of charges. Thus the expression for the electric field at P can be written

as:

=55 - (L =7,

Similar technique can be adopted when the charge distribution is in the form of a line charge

density or a surface charge density.

E(} P;':”" ':f" ?"3'5-.
l4ﬂﬁ,r rr

5 - l,ajtr:w(r—r}_;
4;?TED o

Electric Lines of Forces:
Electric line of force is a pictorial representation of the electric field.

Electric line of force (also called Electric Flux lines or Streamlines) is an imaginary straight or
curved path along which a unit positive charge tends to move in an electric field.

Properties Of Electric Lines Of Force:

1. Lines of force start from positive charge and terminate either at negative
charge or move to infinity.
Similarly lines of force due to a negative charge are assumed to start at
infinity and terminate at the negative charge.
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The number of lines per unit area, through a plane at right angles to the lines, is
proportional to the magnitude of E. This means that, where the lines of force are close
together, E is large and where they are far apart E is small.

If there is no charge in a volume, then each field line which enters it must also leave it.

If there is a positive charge in a volume then more field lines leave it than enter it.

If there is a negative charge in a volume then more field lines enter it than leave it.
Hence we say Positive charges are sources and Negative charges are sinks of the field.
These lines are independent on medium.

Lines of force never intersect i.e. they do not cross each other.

. Tangent to a line of force at any point gives the direction of the electric field E at that
point.

Electric flux density:
As stated earlier electric field intensity or simply ‘Electric field' gives the strength of the field at

a particular point. The electric field depends on the material media in which the field is being

considered. The flux density vector is defined to be independent of the material media (as we'll
see that it relates to the charge that is producing it).For a linear isotropic medium under

consideration; the flux density vector is defined as:

We define the electric flux as
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Solved problems:
Problem1l:

Problem1:

Find the charge in the volume defined by 0 Sx< 1m0 <y<Imand0<z< | mif
p = 30y (uC/m?). What change occurs for the limits -1 < y < 0 m?

Since dQ = p dv,

Q= I«: j'(: _[(: 30x2y dx dy dz =5 uC

For the change in limits on y,
1 p0 pl
o= [ [ [ 30xydedydz=~5ucC

Problem-2

Three point charges, Q, = 30 nC, @, = 150 nC, and Q; = -70 nC, are enclosed by surface
S. What net flux crosses §?

Since electric flux was defined as originating on positive charge and terminating on
negative charge, part of the flux from the positive charges terminates on the negative
charge.

Yoot = Qpet =30 + 150 =70 = 110 nC

Problem-3

A point charge, Q = 30 nC, is located at the origin in cartesian coordinates. Find the
electric flux density D at (1. 3, —4) m.

Referring to Fig. 3.12,

D= Q RR
4nR?

30x107° (a,+3a, —4a,
© 47(26) J26

+ 3a_‘. ~4a,
J26

or, more conveniently, D = 91.8 pC/m?.

al
(9.18 x 10-“)(

] C/m?

Fig. 3.12

Problem-4

Given that D = 10xa, (C/m?), determine the flux crossing a 1-m? area that is normal to the
raxis at x = 3 m.

Since D is constant over the area and perpendicular to it,
¥ = DA = (30 C/m*)(1 m?) =30 C
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Problem-5
Given the vector field A = 5x2(sin£2£)a,, find div A at x = 1.

J
ax

and div Al,.; = 10.

divA=

(szsin-”x)z 5x2(cos L ]” +10x sin™* = 3 ;2 cos ®X 4 10x sin®X
2 2 )2 2 2 2 2

Problem-6

Given that D = (I0r‘/4)a, (C/m?) in the region 0 < r £ 3 m in cylindrical coordinates and
D = (810/4r)a, (C/m’) elsewhere, find the charge density.

For 0<r<3m,

_li(lOr‘)= 3
= 10/ (C/m?)

and for r>3 m,

)
—~—(810/4) =0
3 ( )

ror
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Problem-7

A charge 1 =-20uC is located at P (- 6, 4, 6) and a charge Q; =50uC is
located at R (5, 8, = 2) in a free space. Find the force exerted on Q2 by Qy in
vector form. The distances given are in metres.

Sol. :  From the co-ordinates of I’ and R , the respective position vectors are -
—6a, +43y +6a,
and = 53y +8ay —2a,
The force on Q; is given by,
Q:Q:

= a
4ne GRIII 2

Rer =R-P=[5-(-6)] 3, +(8-4) 3y +[-2-(6)7, ]
=113, +4&y - 83,
JADZ +(4)? +(-8)2 =14.1774
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Gauss's Law:

Gauss's law is one of the fundamental laws of electromagnetism and it states that the total

electric flux through a closed surface is equal to the total charge enclosed by the surface.

Fig 3: Gauss's Law

Let us consider a point charge Q located in an isotropic homogeneous medium of dielectric
constant . The flux density at a distance r on a surface enclosing the charge is given by
D-c8- 4
A
If we consider an elementary area ds, the amount of flux passing through the elementary area is

given by

dur= Dds = 2 Tdscos 8
A

, is the elementary solid angle subtended by the area %= at the location of Q.

Q.::t‘Q

Therefore we can write dyr= A

yegav- %@m -0

For a closed surface enclosing the charge, we can write
which can seen to be same as what we have stated in the definition of Gauss's Law.
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Hence we have,

Qenc = fD .ds = fp\: dv
S Vv

Applving Divergence theorem we have,

?ED.(IS = f7~D dv
S v

Comparing the above two equations, we have

f 7-Ddv = j Py dv
v v

This equation is called the 1st Maxwell's equation of electrostatics.

Application of Gauss's Law:

Gauss's law is particularly useful in computing £ or L) where the charge distribution has some
symmetry. We shall illustrate the application of Gauss's Law with some examples.

1. Edue to an infinite line charge

As the first example of illustration of use of Gauss's law, let consider the problem of
determination of the electric field produced by an infinite line charge of density .C/m. Let us
consider a line charge positioned along the z-axis as shown in Fig. 4(a) . Since the line charge is
assumed to be infinitely long, the electric field will be of the form as shown in Fig. 4(b)

If we consider a close cylindrical surface as shown in Fig. 2.4(a), using Gauss's theorm we can

write,
od =0 =c13€,j_d3=JEDE_dE+ieDE_dE+JEDEdE

Considering the fact that the unit normal vector to areas S: and S3 are perpendicular to the

electric field, the surface integrals for the top and bottom surfaces evaluates to zero. Hence we
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Can write, © = &&.27

;

Fig 4: Infinite Line Charge

2. Infinite Sheet of Charge
As a second example of application of Gauss's theorem, we consider an infinite charged sheet

covering the x-z plane as shown in figure 5. Assuming a surface charge density of<s for the

infinite surface charge, if we consider a cylindrical volume having sidesis placed symmetrically
as shown in figure 5, we can write:

$D-de = 2Dbs = o s
=

@
E='54
E‘D ¥
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x

Fig 5: Infinite Sheet of Charge

It may be noted that the electric field strength is independent of distance. This is true for the
infinite plane of charge; electric lines of force on either side of the charge will be perpendicular
to the sheet and extend to infinity as parallel lines. As number of lines of force per unit area gives
the strength of the field, the field becomes independent of distance. For a finite charge sheet, the

field will be a function of distance.

3. Uniformly Charged Sphere
Let us consider a sphere of radius rO having a uniform volume charge density of rv C/m3. To

determine @erywhere, inside and outside the sphere, we construct Gaussian surfaces of
radius r <r0 and r > r0 as shown in Fig. 6 (a) and Fig. 6(b).

rin

For the region ; the total enclosed charge will be

3

4
= o, —7r
Ql‘."?! -":::I'Il' 3

Fig 6: Uniformly Charged Sphere
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By applying Gauss's theorem,

Doai={ | D,r?sin 8d6d¢ =4’ D, = 0,
pres=ld

Therefore

E=%pﬁ, 0<r<n

For the region ™ 2 ; the total enclosed charge will be

4
Qﬂé = -'Gv E‘-':IT""'I'ZI3

By applying Gauss's theorem,

rznm

Electric Potential / Electrostatic Potential (V):

If a charge is placed in the vicinity of another charge (or in the field of another charge), it
experiences a force. If a field being acted on by a force is moved from one point to another, then
work is either said to be done on the system or by the system.

Say a point charge Q is moved from point A to point B in an electric field E, then the
work done in moving the point charge is given as:

Wa_g=-JAB (F.dl)=-QJAB(E.dl)

where the — sign indicates that the work is done on the system by an external agent.
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The work done per unit charge in moving a test charge from point A to point B is the
electrostatic potential difference between the two points(Vag).

Vag =Wpr—B/Q
- JAB(E . dI)

- [InitialFinal (E . dI)

If the potential difference is positive, there is a gain in potential energy in the movement,
external agent performs the work against the field. If the sign of the potential difference is
negative, work is done by the field.

The electrostatic field is conservative i.e. the value of the line integral depends only on
end points and is independent of the path taken.

B

A
- Since the electrostatic field is conservative, the electric potential can also be written as:

B

VAB=—f_E._d
A

P _ B_
Vis=—J Ed— [E&
A Po

B A
Vis=—J Eld+ [E&

Po Po

Vap =V —V,4
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Thus the potential difference between two points in an electrostatic field is a scalar field that
is defined at every point in space and is independent of the path taken.

- The work done in moving a point charge from point A to point B can be written as:
Wag=-Q[Ve—-Va] = -0 fB_E;d
- Consider a point charge Q at origin O.

A
»

Now if a unit test charge is moved from point A to Point B, then the potential difference between
them is given as:

B l‘H l'B ‘
Vig = - { [ Q
A

r 4TEY-

B TR _ AN e
‘m[rn lg]““ Va

- Electrostatic potential or Scalar Electric potential (V) at any point P is given by:

P__
V=-Ed
Po
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The reference point Po is where the potential is zero (analogues to ground in a circuit).
The reference is often taken to be at infinity so that the potential of a point in space is
defined as

V=-fEd

[+

Basically potential is considered to be zero at infinity. Thus potential at any point ( rB =r) due
to a point charge Q can be written as the amount of work done in bringing a unit positive
charge frominfinity to that point (i.e. rA — «)

Electric potential (V) at point r due to a point charge Q located at a point with position vector
rlis given as:

P o
ATTE|T- 1y

Similarly for N point charges Q1, Q2 ....Qn located at points with position vectors r1,
r2, r3.....rn, theelectric potential (V) at point r is given as:

N
\f — _1 _Ql{ 1"' = Q—
4“8 k:lll‘_l‘kl 'I'EE]

The charge element dQ and the total charge due to different charge distribution is given as:
dQ=pdl — Q=L (pdl) — (Line Charge)

dQ = psds — Q =JS (p.ds) — (Surface Charge)

dQ=pdv  — Q =]V (p,dv) — (Volume Charge)

pL dl

J Ame|r-n |
L

(Line C'harge)

V= I p-'\' ds (Smrface Charge)
JAmE |r-1y |

S

> 7 \" r '
V = I p\ d (Volume Charge)

4WE |r-1y |
v
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Second Maxwell’s Equation of Electrostatics:

The work done per unit charge in moving a test charge from point A to point B is the
electrostatic potential difference between the two points(Vag).

Vag=Ve—Va

Similarly,

Vea=Va—-Vs

Hence it‘s clear that potential difference is independent of the path taken. Therefore

Vag = - VBa
Vast Vea=0

[AB(E.d)+[-[BA(E.dI)]=0
%E.m=0
L

The above equation is called the second Maxwell‘s Equation of Electrostatics in integral form..
The above equation shows that the line integral of Electric field intensity (E) along a closed path
is equal to zero.

In simple words—No work is done in moving a charge along a closed path in an electrostatic
field.

Applying Stokes® Theorem to the above Equation, we have:

ffE LAl = f(7XE)o(ls =
L S

—=>7xE =0
If the Curl of any vector field is equal to zero, then such a vector field is called an Irrotational or

Conservative Field. Hence an electrostatic field is also called a conservative field.

fThe above equation is called the second Maxwell‘s Equation of Electrostatics in differential
orm.
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Relationship Between Electric Field Intensity (E) and Electric Potential (V):

Since Electric potential is a scalar quantity, hence dV (as a function of x, y and z variables) can
be written as:

s av v
Ix + — dy 4 dz

X o ay BE dz
ayv
dz

Ay -l(lxz’lx tdya, + dza, | =-E . dl

7V.dl=-E.dl —> (E=-7V)

Hence the Electric field intensity (E) is the negative gradient of Electric potential (V).
The negative sign shows that E is directed from higher to lower values of V i.e. E is opposite to
the direction in which V increases.

Work Done To Assemble Charges:

In case, if we wish to assemble a number of charges in an empty system, work is required to do
s0. Also electrostatic energy is said to be stored in such a collection.

Let us build up a system in which we position three point charges Q1, Q. and Qs at position ry, r,
and rs respectively in an initially empty system.

Consider a point charge Q; transferred from infinity to position rl in the system. It takes no
work to bring the first charge from infinity since there is no electric field to fight against (as the
system is empty i.e. charge free).

Hence, W; =01

Now bring in another point charge Q2 from infinity to position r2 in the system. In this case we
have to do work against the electric field generated by the first charge Q1.

Hence, W, = Q2 Vo,

Where: Vy; is the electrostatic potential at point r, due to Q.

- Work done W5, is also given as:

W, = QIQI
T 4ATE |1,-14]
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Now bring in another point charge Qs from infinity to position rs in the system. In this case
we have to do work against the electric field generated by Q; and Q..

Hence, W3 = Q3 Va1 + Q3 V3, = Q3 ( Var + V3z)

where V3; and V3, are electrostatic potential at point r; due to Q1 and Q; respectively.

The work done is simply the sum of the work done against the electric field generated by
point charge Q1 and Q2 taken in isolation:

\\,’3= Q3Q1 5 Q3Q2
4TE |13-1;| 4TE |ry-1,|

- Thus the total work done in assembling the three charges is given as:

WE = W1+ W2+ W3
0+Q2V21+Q3(V31+V32)

Also total work done ( WE ) is given as:

1 Q,0Q, Q10Q, : Q3Q,
ATE | |r,-1y] [Py~ 1y ry- 1y

Wy =

If the charges were positioned in reverse order, then the total work done in assembling them
IS given as:

WE =W3 + W2+ W1
=0+ Q2V23 + Q3( V12+ V13)




Chapter two Electrostatics two

Where V23 is the electrostatic potential at point r2 due to Q3 and V12 and V13 are electrostatic
potential at point rl due to Q2 and Q3 respectively.

- Adding the above two equations we have,

2WE = Q1 (V12 + V13) + Q2 (V21 + V23) + Q3 (V31 + VV32)
=Q1V1+Q2V2+Q3V3

Hence

WE =1/2 [Q1V1 + Q2V2 + Q3V3]

where V1, V2 and V3 are total potentials at position r1, r2 and r3 respectively.

- The result can be generalized for N point charges as:

X
Wi Bl Qi
1

k=

The above equation has three interpretation: This equation represents the potential energy of the
system.This is the work done in bringing the static charges from infinity and assembling them in
the required system. This is the kinetic energy which would be released if the system gets
dissolved i.e. the charges returns back to infinity.

In place of point charge, if the system has continuous charge distribution ( line, surface or
volume charge), then the total work done in assembling them is given as:

W= IE fl*‘ﬂ'dl (Line Charge)
L

W= IE J P.Vids  (Swface Charge)

5

W= lT_J PV dv (Volmme Charge)

%
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Sincepv=V.DandE=-VV,

Substituting the values in the above equation, work done in assembling a volume charge
distribution in terms of electric field and flux density is given as:

W= %IDE dv = %fﬁEzdv
VvV

Vv

The above equation tells us that the potential energy of a continuous charge distribution
is stored in an electric field.

The electrostatic energy density Wk is defined as:

~

Wg = 12- gE? 7 Wg = l Wgdv

v
Properties of Materials and Steady Electric Current:

Electric field can not only exist in free space and vacuum but also in any material medium. When
an electric field is applied to the material, the material will modify the electric field either by
strengthening it or weakening it, depending on what kind of material it is.

Materials are classified into 3 groups based on conductivity / electrical property:

e Conductors (Metals like Copper, Aluminum, etc.) have high conductivity (¢ >> 1).
e Insulators / Dielectric (Vacuum, Glass, Rubber, etc.) have low conductivity (o << 1).
e Semiconductors (Silicon, Germanium, etc.) have intermediate conductivity.

Conductivity (o) is a measure of the ability of the material to conduct electricity. It is
the reciprocal of resistivity (p). Units of conductivity are Siemens/meter and mho.

The basic difference between a conductor and an insulator lies in the amount of free electrons
available for conduction of current. Conductors have a large amount of free electrons where as
insulators have only a few number ofelectrons for conduction of current. Most of the conductors
obey ohm‘s law. Such conductors are also called ohmic conductors.

Due to the movement of free charges, several types of electric current can be caused.
The different types of electric current are:

e Conduction Current.

e Convection Current.
e Displacement Current.
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Electric current:

Electric current (1) defines the rate at which the net charge passes through a wire of
cross sectional surface area S.

Mathematically,

If a net charge AQ moves across surface S in some small amount of time At, electric current(l)
is defined as:

[= im 29 _d4Q

How fast or how speed the charges will move depends on the nature of the material medium.

Current density:

Current density (J) is defined as current Al flowing through surface AS.

Imagine surface area AS inside a conductor at right angles to the flow of current. As the
area approaches zero, the current density at a point is defined as:

iy |
Asso LS

The above equation is applicable only when current density (J) is normal to the surface.

In case if current density(J) is not perpendicular to the surface, consider a small area ds of
the conductor at an angle 6 to the flow of current as shown:

=\
— ds

*~—>

In this case current flowing through the area is given as:

dl =JdScosb=J.dS and I=f57._d’s‘
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Where angle 6 is the angle between the normal to the area and direction of the current.

From the above equation it‘s clear that electric current is a scalar quantity.

CONVECTION CURRENT DENSITY:

Convection current occurs in insulators or dielectrics such as liquid, vacuum and rarified gas.
Convection current results from motion of electrons or ions in an insulating medium. Since
convection current doesn‘t involve conductors, hence it does not satisfy ohm‘s law. Consider a
filament where there is a flow of charge pv at a velocity u = uy ay.

— 21—

- Hence the current is given as:

But we know | £Q = P £V

Hence
Fa ! 1AV |
LT = : —l‘ —pm'LSLl
Fall | Lt £t

- PyLSu,

Again. we also know that

Hence
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Where uy is the velocity of the moving electron or ion and p, is the free volume charge density.

- Hence the convection current density in general is given as:

J=py U

Conduction Current Density:

Conduction current occurs in conductors where there are a large number of free electrons.
Conduction current occurs due to the drift motion of electrons (charge carriers). Conduction
current obeys ohm‘s law.

When an external electric field is applied to a metallic conductor, conduction current

occurs due to the drift of electrons.

The charge inside the conductor experiences a force due to the electric field and hence should
accelerate but due to continuous collision with atomic lattice, their velocity is reduced. The net
effect is that the electrons moves or drifts with an average velocity called the drift

velocity (vd) which is proportional to the applied electric field (E).

Hence according to Newton‘s law, if an electron with a mass m is moving in an electric
field E with anaverage drift velocity vd, the the average change in momentum of the free
electron must be equal to the applied force (F = - e E).

muv
_d = —eE
T

where T is the average tiine interval

between collision.

The drift velocity per unit applied electric field is called the mobility of electrons (ue).

vd=-peE

where pe is defined as:

(s
m
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Consider a conducting wire in which charges subjected to an electric field are moving with
drift velocity vd.

Say there are Ne free electrons per cubic meter of conductor, then the free volume

charge density(pv)within the wire is

pv=-¢€ Ne
The charge AQ is given as:
AQ =pyv AV =-e Ne AS Al = - e Ne AS vd At

- The incremental current is thus given as:

=-Ne€ASVgq

Now since | Vg=- e E

Therefore

LI =Neel S e E

The conduction current density is thus defined as:

iy |
e xS e€]
where o is the conductivity of the material.
The above equation is known as the Ohm‘s law in point form and is valid at every point
in space.

In a semiconductor, current flow is due to the movement of both electrons and
holes, hence conductivity is given as:

6 = (Ne pe + Nh ph)e
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DIELECTRC CONSTANT:
It is also known as Relative permittivity.

If two charges q 1 and q 2 are separated from each other by a small distance r. Then by
using the coulombs law of forces the equation formed will be

F — 1 q1492
dmeg T2

0

In the above equation <0 is the electrical permittivity or you can say it, Dielectric constant.

If we repeat the above case with only one change i.e. only change in the separation
medium between the charges. Here some material medium must be used. Then the
equation formed will be.

_ 1 ¢
Fn" o=
; dmeg T2
Now after division of above two equations

= r Or k
¥

m

In the above figure

"I jsthe Relative Permittivity. Again one thing to notice is that the dielectric constant is

—

represented by the symbol (K) but permittivity by the symbol or
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CONTINUITY EQUATION:

The continuity equation is derived from two of Maxwell's equations. It states that the
divergence of the current density is equal to the negative rate of change of the chargedensity,

Ip
V' =——8-t‘.

Derivation

One of Maxwell's equations, Ampere's law, states that

oD

Taking the divergence of both sides results in

oV -D
V-VXH=V-J+VT,

but the divergence of a curl is zero, so that

oV -D
V-J-i—a—f

Another one of Maxwell's equations, Gauss's law, states that

V:-D=p.

Substitute this into equation (1) to obtain

= 0. (1)

B _
ot

which is the continuity equation.

V-J+ 0,
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1.13 RELAXATION TIME:

Let us congider that a charge is introduced at some interior point of a given material
{conductor or diclectric)
From, continuity of curren! equation, we have

S o r‘f' X

J o ———] )

Fr
We have, the point form of Olin’s law as,

J = 6F m==(2)

From Gauss's law, we have,

Substitute equations (23 and (3) in equation {17, we get
— = T
VOEf =6V .E=6.—+~ =
= i
af
=2
o
The above equation 18 a homogeneous linear ordinary differential equation. By separating
variable in eqg (4), we get,
af, =6
==
't £
af, =i
N — i e— _L:‘

= -

(3} =
Mow integrate on both sides of above equation

- Eif 6 ;.
f—— = I

of [

; 6 :
sInf =——t+Inf,

W

Where In p.sis a constant of infegration
Thus,
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In eq (5), fie is the initial charge density (i.c fv at =0),
We can see from the equation that as a result of introducing charge at some interior point of
the material there 15 a decay of volume charge density [

The time constant “T,” 13 known as the relaxation time or rearrangement time,

Relaxation time is the time it takes a charge placed in the interior of a material to drop to ¢

= 36.% pereent fits initial value
The relation time 18 short for good conductors and long for good dielectrics.
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LAPLACE'S AND POISSON'S EQUATIONS:

A useful approach to the calculation of electric potentials is to relate that potential to the
charge density which gives rise to it. The electric field is related to the charge density by the
divergence relationship

FE = electric field
P = charge density

£y = permittivity
and the electric field is related to the electric potential by a gradient relationship
E=-VV
Therefore the potential is related to the charge density by Poisson's equation
V.vv=vy= P
El‘l

In a charge-free region of space, this becomes LaPlace's equation

VV=0

This mathematical operation, the divergence of the gradient of a function, is called the
LaPlacian. Expressing the LaPlacian in different coordinate systems to take advantage of the
symmetry of a charge distribution helps in the solution for the electric potential V. For example,
if the charge distribution has spherical symmetry, you use the LaPlacian in spherical polar
coordinates.

Since the potential is a scalar function, this approach has advantages over trying to calculate the
electric field directly. Once the potential has been calculated, the electric field can be computed
by taking the gradient of the potential.
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Polarization of Dielectric:

If a material contains polar molecules, they will generally be in random orientations when
no electric field is applied. An applied electric field will polarize the material by orienting
the dipole moments of polar molecules.

Unpolarized

This decreases the effective electric
field between the plates and will
increase the capacitance of the parallel
plate structure. The dielectric must be

a good electric insulator so as to Polarized by an applied electric field.

minimize any DC leakage current P W S SR SO R 3

DO
@@@GD@GD

through a capacitor.

The presence of the dielectric decreases the electric field produced by a given charge density.

o

E T
olarization z
P ¥ ke,

effective = E - E

The factor k by which the effective field is decreased by the polarization of the
dielectric is called the dielectric constant of the material.
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Solved problems:
Problem1:

Three point charges, Q, = 30 nC, @, = 150 nC, and Q; = -70 nC, are enclosed by surface
§. What net flux crosses S?

Since electric flux was defined as originating on positive charge and terminating on
negative charge, part of the flux from the positive charges terminates on the negative
charge.

Woet = Qpet = 30 + 150 = 70 = 110 nC

Problem-2

An electrostatic field is given by E = (x/2 + 2y)a, + 2xa, (V/m). Find the work done
in moving a point charge Q@ = -20 uC (a) from the origin to (4, 0, 0) m, and (b) from
(4, 0, 0) m to (4, 2, 0) m.

(a) The first path is along the x axis, so that dI = dx a,.

dW = -QE - dI = (20 x 10'5)(%+2y)dx

4
W= (20 x 10'°)J' (5 +2y)dx=80pJ
o\2
(b) The second path is in the a, direction, so that dI = dya,.
2
W= (20 x 10'6)J°2xdy =320 @
Problem-3

What electric field intensity and current density correspond to a drift velocity of
6.0 X 10™* m/s in a silver conductor?

For silver o = 61.7 MS/m and H=56 %102 m?/V . s.

= 1.07 x 107 V/m

J= oF = 6.61 x 10° A/m?
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Problem-4
Find the current in the circular wire shown in Fig. 6.6 if the current
density is 3 = 15(1 - 71%%%)a, (A/m?). The radius of the wire is 2 mm.
A cross section of the wire is chosen for S. Then

dl=J - dS
= 15(1 - e71%)a, . r dr doa,

2 0.002
and I= _[ i _[ 15(1 — e=190) 1 dr d g
0 0

= 1.33 x 107 A = 0.133 mA °fs

Any surface S which has a perimeter that meets the outer surface of
the conductor all the way around will have the same total current,
I = 0.133 mA, crossing it.

Fig. 6.6

Problem-5

Determine the relaxation time for silver, given that o = 6.17 x 10’ S/m. If charge of
density p, is placed within a silver block, find p after one, and also after five, time

constants.
Since £ = &,

10367 "
=— =143 x10¥5s

L o
o 6.17 x107

T=

Therefore
at te=1: p=poe’ = 0.368p,

at t=57: p=pye” =6.74 x 107p,

Problem-6

Find the magnitudes of D and P for a dielectric material in which £ = 0.15 MV/m and
Xe = 4.25.

Since € = y, + 1 = 5.25,

1079

D = goef = 3k (5.25)(0.15 x 10%) = 6.96 uC/m®

-9
P = & = 13%# (4.25)(0.15 x 10°) = 5.64 uC/m?
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Introduction:

In previous chapters we have seen that an electrostatic field is produced by static or stationary charges.
The relationship of the steady magnetic field to its sources is much more complicated.

The source of steady magnetic field may be a permanent magnet, a direct current or an electric
field changing with time. In this chapter we shall mainly consider the magnetic field produced by
a direct current. The magnetic field produced due to time varying electric field will be discussed
later.

There are two major laws governing the magneto static fields are:

e Biot-Savart Law

e Ampere's Law
Usually, the magnetic field intensity is represented by the vector H . Itis customary to represent the

direction of the magnetic field intensity (or current) by a small circle with a dot or cross sign
depending on whether the field (or current) is out of or into the page as shown in Fig. 2.1.

H (or 1) out of the page E(or I') into the page

Fig. Representation of magnetic field (or current)

Biot- Savart’s Law:

This law relates the magnetic field intensity dH produced at a point due to a differential

current element £ as shown in Fig.




The magnetic field intensity dH at P can be writtenas,

ldix&, _IdIxR

dH = - :
4R 4R

_ diSina

dH .
4R

where A |R| is the distance of the current element from the point P.

The value of the constant of proportionality 'K' depends upon a property called permeability of
the medium around the conductor. Permeability is represented by symbol 'm’ and the constant 'K
is expressed in terms of 'm' as

Thus

K Idl sin®
4N r2

Magnetic field 'B' is a vector and unless we give the direction of 'dB’, its description is not
complete. Its direction is found to be perpendicular to the plane of 'r" and 'dl'.

If we assign the direction of the current 'I' to the length element 'dl', the vector product dl x r has
magnitude r dl sing and direction perpendicular to 'r' and 'dl".

Hence, Biot-Savart law can be stated in vector form to give both the magnitude as well as
direction of magnetic field due to a current element as

= B I(dlXr)
= 4T r3




Similar to different charge distributions, we can have different current distribution such as
line current, surface current and volume current. These different types of current densities are
shown in Fig. 2.3.

T

da-v”f
b a4

Line Current Surface Current Volume Current

Fig. 2.3: Different types of current distributions

By denoting the surface current density as K (in amp/m) and volume current density as J
(in amp/m2) we can write:

Idi =Kds = Jav
( It may be noted that { = £dw = Jda )

Employing Biot -Savart Law, we can now express the magnetic field intensity H. In terms of
these current distributions as

7= fdfoR
4R

E = KHEX3§
4R

—  JdvxR
FTp gt
J 4R




"H Due to infinitely long straight conductor:

We consider a finite length of a conductor carrying a current i placed along z-axis as shown in
the Fig 2.4. We determine the magnetic field at point P due to this current carrying conductor.

—

o ay H
P P
Fig. 2.4: Field at a point P due to a finite length current carrying conductor

With reference to Fig. 2.4, we find that

o

di = .:i'zc;x and R = ,c}c::;— za,
Applying Biot - Savart's law for the current element 7 dl e can write,

o5 MIXR _ pdzd,
Ao D3 2 27302
. anfo* +27]
—=tan @
Substituting we can write,
el plsec azf&& 2 (sin @, —sin @ )&
. Amr Psecca 4o <

= 0
We find that, for an infinitely long conductor carrying a current |, @ =30 an
Therefore




Ampere's Circuital Law:

Ampere's circuital law states that the line integral of the magnetic field H (circulation of H))
around a closed path is the net current enclosed by this path. Mathematically,

PHdI=1,
The total current | enc can be written as,

I, = lj.dg
By applying Stoke's theorem, we can write

95??.4‘? - !V xHds

lvxﬁdg =J’3d§

—

LN =T

Which is the Ampere's circuital law in the point form and Maxwell’s equation for magneto static
fields.

Applications of Ampere’s circuital law:

1 Itisusedtofind H andB due to any type of current distribution.
2 If "H orB isknown then it is also used to find current enclosed by any closed path.

We illustrate the application of Ampere's Law with some examples.

"H Due to infinitely long straight conductor :( using Ampere's circuital law)

We compute magnetic field due to an infinitely long thin current carrying conductor as
shown in Fig. 2.5. Using Ampere's Law, we consider the close path to be a circle of
radius < as shown in the Fig. 4.5.

If we consider a small current element ¢/(= ldzd, ) : dH is perpendicular to the plane

containing both @l gng R(=04,) Therefore only component of H that will be present is
iy Ji.e., H=Hza,
By applying Ampere's law we can write,

2
H=_1 4, [ Hupd =t pem=1
270




Fig. Magnetic field due to an infinite thin current carrying conductor

"H Due to infinitely long coaxial conductor :( using Ampere's circuital law)

We consider the cross section of an infinitely long coaxial conductor, the inner conductor
carrying a current | and outer conductor carrying current - | as shown in figure 2.6. We
compute the magnetic field as a function of < as follows:

In the region 9 < €< &

2

T (e
Rl

_ T ip

. % 27’

In the region %1 <2 < &

L

—f

Fig. 2.6: Coaxial conductor carrying equal and opposite currents in the region

R, < p<R

o 4 K=p

In the region © 7 %




Magnetic Flux Density:

In simple matter, the magnetic flux density B related to the magnetic field intensity H aswhere

8=ufd H called the permeability. In particular when we consider the free space

- . T — -7
=t \yhere 4 = 4107 Him is the permeability of the free space. Magnetic flux density is

measured in terms of Wh/m 2.

The magnetic flux density through a surface is given by:

Wb

In the case of electrostatic field, we have seen that if the surface is a closed surface, the net flux passing
through the surface is equal to the charge enclosed by the surface. In case of magnetic field isolated
magnetic charge (i. e. pole) does not exist. Magnetic poles always occur in pair (as N-S). For example,
if we desire to have an isolated magnetic pole by dividing the magnetic bar successively into two, we
end up with pieces each having north (N) and south (S) pole as shown in Fig. 6 (a). This process could
be continued until the magnets are of atomic dimensions; still we will have N-S pair occurring

together. This means that the magnetic poles cannot be isolated.

— —
Hor B lines

8§

{a) {b)
Fig. 6: (a) Subdivision of a magnet (b) Magnetic field/ flux lines of a straight current carrying conductor
Maxwell’s 2" equation for static magnetic fields:
Similarly if we consider the field/flux lines of a current carrying conductor as shown in Fig. 6 (b), we
find that these lines are closed lines, that is, if we consider a closed surface, the number of flux lines
that would leave the surface would be same as the number of flux lines that would enter the surface.

From our discussions above, it is evident that for magnetic field,




in integral form
which is the Gauss's law for the magnetic field.
By applying divergence theorem, we can write:

13_3’.@?;5 =Jv.§.:fv -0

which is the Gauss's law for the magnetic field in point form.

in point/differential form

Magnetic Scalar and Vector Potentials:

In studying electric field problems, we introduced the concept of electric potential that simplified
the computation of electric fields for certain types of problems. In the same manner let us relate
the magnetic field intensity to a scalar magnetic potential and write:

—_—

H=-V,

From Ampere's law , we know that

TxH =0

Therefore, V(W) =J

e

<(TF)=0 Y,

we find that £ = V% is valid onlywhere 7 =0

Thus the scalar magnetic potential is defined only in the region where =0 . Moreover, Vm in

But using vector identity, v

general is not a single valued function of position. This point can be illustrated as follows. Let us
consider the cross section of a coaxial line as shown in fig 7.
- i

H=—"3

= @
In the region &% <b 7 =0 and 27

Fig. 7: Cross Section of a Coaxial Line




If Vm is the magnetic potential then,

ar,
o, = — L 90
& dg

_ 7

2

If we set Vm =0 at then ¢c=0 and

SAt g=g P =—i¢%
2

We observe that as we make a complete lap around the current carrying conductor , we reach %

again but VVm this time becomes

i
-— &, +2
— (¢ +27)
We observe that value of Vm keeps changing as we complete additional laps to pass through the

same point. We introduced Vm analogous to electostatic potential V.
But for static electric fields,

TxE=0gng FEI0

- = = B d
whereas for steady magnetic field ¥ > =0 wherever ¥ =0 but C.]S
along the path of integration.

We now introduce the vector magnetic potential which can be used in regions where
current density may be zero or nonzero and the same can be easily extended to time varying

cases. The use of vector magnetic potential provides elegant ways of solving EM field problems.

—~ v(vxﬁ)=u

Since *-& = Uand we have the vector identity that for any vector A, , we

can write & =% *A

Here, the vector field is:ii called the vector magnetic potential. Its SI unit is Wb/m.
Thus if can find 4 of a given current distribution E canbe found from4 through a curl
operationWe have introduced the vector function and Felated dits curl to . A vectorB
function is defined fully in terms of its curl as well as divergence. The choice VA
made as follows.

TRV RA= (T H = uf




— _ — _ 2_..
By using vector identity, ¥ * ¥ ¥4 =V .4 -V 4
7o) -F A=

Great deal of simplification can be achieved if we choose vA=0,

— a7y _ - i i i i
Putting V-A=0  we get ¥ 4 = ~#J which is vector poisson equation.

In Cartesian coordinates, the above equation can be written in terms of the components as
V4, =-ud,
VI, =-pd,
VA4, =,
The form of all the above equation is same as that of

vip = -2
£

for which the solution is

In case of time varying fields we shall see that , which is known as Lorentz condition, V being

the electric potential. Here we are dealing with static magnetic field, so vA=0,

By comparison, we can write the solution for Ax as
Mooy o
=2 gy
T

Computing similar solutions for other two components of the vector potential, the vector

potential can be written as

A=A ia"v'
dmd B
This equation enables us to find the vector potential at a given point because of a volume current

density .
Similarly for line or surface current density we can write




The magnetic flux ¥ through a given area S is given by

W= lgd;—; . .
Substituting & =% *.A4

W= lvxﬁ.af;f =r£ﬁ.df

Vector potential thus have the physical significance that its integral around any closed path is
equal to the magnetic flux passing through that path.




Forces due to magnetic fields

There are three ways in which the force due to magnetic fields can be experienced.
The force can be

(a}) Force om a charged particle:

We have F.=QE

This shows that if Q is positive, F, and E arc in same direction. [t is found that the
magnetic force F, experienced by a charge Q moving with a velocity u in magnetic
field B is

F.-QuxB

For a moving change () im the presence of both electric and magnetic ficlds, the total
force on the charge is given by

F = Fg+Fn

or

F=Qi{E+u x B)

This is known as Lorentz force eguation.

(b)) Force om a current element:

To determine the force on a current element Idl of a current carrying conductor due
to the magnetic field B, we take the equation

J=P.u

We bave Idl= "9 il = dQ - d = dOx

Hence

Idl= dQ.u

This shows that an elemental charge dQ) moving with velocity u (thereby producing
convection current element dQu) is eguivalent to a conduction current element Idl
Thus the force on current element is give by

dF=1dlx B

If the current 1 is through a closed path L. or circuit, the force on the circuit is given
by

F= j’ Idi= B

(¢} Force between two current elements:

Consider the force between two elements [dl) and [:dh. According to biotsavarts
law, both current elements produce magnetic fields. Force didF,) on element I;d1,
due to field dB; produced by element 1; dl; as shown in figure below:

65



d(dF,) = 1,Dl; x dB.
But from biot Savarts law
pul.dl, xa,

4R

11

dB,

Hence

£, { r1'."l x {u'._. {f}" Xy, |
4R,

This equation is the law of force between two current elements.

d(di))

We have Fl

4

_u},l,.’, g, J- f“'ll x (»(l'/'. > -’JR..'

R,

Faraday's Law:

Michael Faraday, in 1831 discovered experimentally that a current was induced in a conducting
loop when the magnetic flux linking the loop changed. In terms of fields, we can say that a time
varying magnetic field produces an electromotive force (emf) which causes a current in a closed
circuit. The quantitative relation between the induced emf (the voltage that arises from
conductors moving in a magnetic field or from changing magnetic fields) and the rate of change
of flux linkage developed based on experimental observation is known as Faraday's law.

Any change in the magnetic environment of a coil of wire will cause a voltage (emf) to be
"induced" in the coil. No matter how the change is produced, the voltage will be generated.
The change could be produced by changing the magnetic field strength, moving a magnet
toward or away from the coil, moving the coil into or out of the magnetic field, rotating the coil
relative to the magnet, etc.

Faraday's law is a fundamental relationship which comes from Maxwell's equations. It serves as

a succinct summary of the ways a voltage (or emf) may be generated by a changing magnetic
environment. The induced emf in a coil is equal to the negative of the rate of change of
magnetic flux times the number of turns in the coil. It involves the interaction of charge with
magnetic field.




When two current carrying conductors are placed next to each other, we notice that each induces
a force on the other. Each conductor produces a magnetic field around itself (Biot— Savart law)
and the second experiences a force that is given by the Lorentz force.

FORCE BETWEEN LONG PARALLEL CONDUCTORS

— [
Current in same direction

Fo~
O

Mathematically, the induced emf can be written as

_dg
Emf= df Volts

where # is the flux linkage over the closed path.
d

A non zero dr may result due to any of the following:

(a) time changing flux linkage a stationary closed path.

(b) relative motion between a steady flux a closed path.

(c) a combination of the above two cases.

The negative sign in equation (7) was introduced by Lenz in order to comply with the
polarity of the induced emf. The negative sign implies that the induced emf will cause a current
flow in the closed loop in such a direction so as to oppose the change in the linking magnetic
flux which produces it. (It may be noted that as far as the induced emf is concerned, the closed
path forming a loop does not necessarily have to be conductive).

If the closed path is in the form of N tightly wound turns of a coil, the change in the
magnetic flux linking the coil induces an emf in each turn of the coil and total emf is the sum of
the induced emfs of the individual turns, i.e.,

d

Emf = U Volts

By defining the total flux linkage as
A=Ng




The emf can be written as

dd
Emf = B dt
Continuing with equation (3), over a closed contour 'C' we canwrite
Emf = SPCE'EH
where % isthe induced electric field on the conductor to sustain the current.
Further, total flux enclosed by the contour 'C ' is given by

6= lE.dE

Where S is the surface for which 'C' is the contour.

From (11) and using (12) in (3) we can write

§,Bdi=-24 B

By applying stokes theorem

which is the Faraday's law in the point form

o

2
We have said that non zero can be produced in a several ways. One particular case is when a
time varying flux linking a stationary closed path induces an emf. The emf induced in a

stationary closed path by a time varying magnetic field is called a transformer emf .




Displacement Current Density:

The equation
Ax H = For static EM fields 15 modified to Modified to
AxH =+, (3.19)

To make the Ampere's law compatible for varying fields.

Now, applying divergence, we get

A{dxH)=0=AJ +AJ,

Therefore,

d(i’s.i}) A d£

AJ,
dt ar

df)

= Jy=—

(3.20)




MAXWELL’S EQUATIONS (Time varying Fields)

Introduction:
In our study of static fields so far, we have observed that static electric fields are produced by
electric charges, static magnetic fields are produced by charges in motion or by steady current.
Further, static electric field is a conservative field and has no curl, the static magnetic field is
continuous and its divergence is zero. The fundamental relationships for static electric fields
among the field quantities can be summarized as:

VxE=0 (1)

—

VP4 @
For a linear and isotropic medium,
D=cZ (3)
Similarly for the magnetostatic case

VE-= (4)

W -7 (5)

—

VxH=J ()
It can be seen that for static case, the electric field vectors Eand Dand magnetic field

vectors Band A form separate pairs.
In this chapter we will consider the time varying scenario. In the time varying case we
will observe that a changing magnetic field will produce a changing electric field and vice versa.
We begin our discussion with Faraday's Law of electromagnetic induction and then
present the Maxwell's equations which form the foundation for the electromagnetic theory.

Maxwell's equations represent one of the most elegant and concise ways to state the
fundamentals of electricity and magnetism. From them one can develop most of the working
relationships in the field. Because of their concise statement, they embody a high level of
mathematical sophistication and are therefore not generally introduced in an introductory
treatment of the subject, except perhaps as summary relationships.

These basic equations of electricity and magnetism can be used as a starting point for advanced
courses, but are usually first encountered as unifying equations after the study of electrical and
magnetic phenomena.




Symbols Used

E = Electric field p = charge I = electric
density current
B = Magpnetic field €0 = permittivity J = current
density
D = Electric u0 = permeability ¢ = speed of
displacement light

H = Magnetic field M = Magnetization P =
strength Polarization

Integral form in the absence of magnetic or polarizable media:

I. Gauss' law for electricity §E : d-. = i
€o

Gauss' law for magnetism §

Ao,

[1l. Faraday's law of induction §E-d§' = —
dt

IV. Ampere's law

B.ds = '+——jE-dA
§ = Pl c® ot

Differential form in the absence of magnetic or polarizable media:

I. Gauss' law for electricity V- -E= ﬁ = 47l'kp

€o




V-B=0

Gauss' law for magnetism

I1l. Faraday's law of induction V\ E = _a_B

ot

vxpo ik, 10E
o ¢ ot

IV. Ampere's law

J | OE
— > + %
E,c0 ¢ Ot

1

k = L — Coulomb's .
dme,  constant U E,

Differential form with magnetic and/or polarizable media:

V<-D=p

I. Gauss' law for electricity

D=gE+P D=¢g,E Freespace
General Isatropic linear

case D=z X7 =

. Gauss' law for magnetism

I1l. Faraday's law of induction {/ y F = _a_B

ot
V,\'H:J+a—D

IV. Ampere's law al

B=u,(H+M) p_ u,H Free space

General B=uH Isotropic linear
case magnetic medium




Gauss’s Law Integral form:
Left side: The total magnetic flux passing
(Magnetic fields) ya;[ H-dS= 0 The number of magnetic field | through any closed surface 1s
Bl Rz‘lc;i:r lmes —  perpendicularly | zero.
Left passing through a closed
surface, Flux enter the closed surface 1s
same with the flux come out
Right side: from the surface.
Identically zero.
The divergence of the
Differential form: magnetic field at any point 1s
o sm Left side: zero.
{“ov H = 9 Divergence of the magnetic
Lot Right tield — the tendency of the
field to “flow™ away from a
point than toward it.
Right side:
Identically zero.
Integral form:
Faraday’s Law ~ Left side: Changing magnetic flux
p s v 0H -|The circulatiop of the wvector |through a surface induces
:HCE dl :_r“oJ‘SE'd‘S electric field. £ around a closed |an emf in any boundary
T ——e — path. C. path. C of that surface.
; o and a changing magnetic
Right side: field. induces a

any surface. S.

The rate of change with time
(d/dt) of magnetic field. through

circulating electric field.

Differential form:

= oH
VxE= ™
< ot
e . Or
Right

Left side:

circulate around a point.
Right side:

magnetic field. H
(d/dr)

Curl of the electric field. — the
tendency of the field lines to

The rate of change of the
over time

A circulating  electric
field. is produced by a
magnetic field. H that
changes with time.
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Ampere’s Law

Integral form:

Left side:

An electric current or a

a-' The circulation of the |changing clectric flux
1 ﬁ .df:[ j e _E ,dg magnetic field. Haround a |through a surface
LA W closed path. C. produces a circulating
Left g magnetic field around any
gt Right side: path. C that bounds that
Two sources for the magnetic | surface.
field. H: a steady conduction
currentl, J"f and a changing
electric field. E through any
surface. bounded by closed
path. C.
Differential form:
o Left side: A circulating  electric

VeBed s
e —

Loyt

Riéhr

ot

Curl of the magnetic field. —
the tendency of the field lines
to circulate around a point.

Right side:

Two ferms represent the
electric current density. J, and
the time rate of change of the
electric field. E .

field. is produced by a
magnetic  field. /7 that
changes with time.

An elecliie current.

o1 a
changing electric field.
through a surface
produces a circulating
magnetic field. Haround

any path that bounds that
surface.
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Inconsistency of amperes law:

Ampere's circuit law states that the line integral of tangential component
ol TT arournd a closed path i= same as the net current lenc enclosed by the
path.
e

[Hdr=1,

By applying stoke’s theorem,

IH il Becomes I J s

-. Therefore, Ax H=J (3.14)
This 1= true in case of static EM hields.

But in case of time-varying ficlds, the above Ampere’s law shows same
mconsistency.

The incensistency of ampere law for time varying fields is shown in two cases:
1. For static EM ficlds, we have

Axfl =0
Applying divergence on both sides, we pet,

A{AxH)=AT
But divergence of curl of a vector field iz always zero.
Therefore,

A(AHY=0=AJ
The continuity of current equation 1s given by

AT = —dp,
at

Where J = Current density
e = Charge density

For static fields, no current is produced, therefore, ¢ =0 = AJ=0
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[mplics og. 3.135 is satisfied but for time varving ficlds, current is produced
and therefore,

—de,

AT Iy (3.16)

alt
Eq. (3.15) and eq. (3.16) are contradicting each other.

This is an inconsistency of ampere’s law and the Amperce's law must be
modilied for time varying hHelds.

2. Consider the typical example of where the surface passes between the
capacior plates.

The higure s shown below.

F'|g 1.2 ak Twosprisces ol 'I‘l“l_‘gl‘ll"-“ll'l which rtpl-ln the Ir-;rﬂslﬂn:nn:y ol .‘\mprr‘-'g law

In fig 3.3(a),

Based on Ampere’s circunt law we get figure




In fig 3.3(b), based the ampere’s circunt law, we get,

(H.dl = [Jds=1, =0 (3.18)

Because no conduction current flows through 3,
Le. J=0

in both (a) and (b), same closed path is used, but equations 3.17
are different.

Thiz 15 an inconsistency of Ampere’s circuit law.

This inconsistency of Ampere's circuit law in both cases (1) and (2) can

be resolved by including displacement current in Ampere's circuit law,
Substituting in (3. 19), we got,

A i =g 4 22
el

This 1= the Maxwell equation {(based on ampere’s circun Law) for tiem
varying fields.

In cguation (3.21),
J, = Displacement current density
J = Conduction current densiy,

The conduction current density J involves Mow of charges. The
displacement current density J, does not involve flow of charges.
Dizplacement current,

F oo s

I, = |Jdds = | =




Solved problems:

Problem1:

(a) In a cylindrical conductor to the reqion 0.01 =r=0.02,0<z <1 mand
the current density is given by,
J =10e"1%7g, A/m?
Find the total current crossing the extential of this region with
@ = constant plane.

(b) Find the total current in a circular conductor of 4 mm radius if the
-

. : . 0
current density varies accordingto J = L A/m?Z,
>

Solution

(a) Total current in the wire is given as,
0.02

/ _des = _[ J’ [lOc‘""‘”u ][uhd G ]

re 02«0

002 |
= J Il()r("'“"”(lrd:

r=0.01] =0

002
=10 j re-'"rdy

r=0.01

-

ye100r 0.02 0.02 e~100r
o coi o™ e
Z100 |, 100

r=0.0]

i =100,
=10 ——l——-(() 02¢2-0.0le"' )+
100 =100 x 100}, ,

.

=2x%10e"!
=310"}¢?




(b) Total current is given as,

2x 0.004 104 0,004
| = jJ.d.s' - j j — rdrdd = 27 X 10* j dr =21 %104 0,004 = 807 A
\Y o=l r=l) . rai)
Problem2
IfJ = -%—(2c059 4, +sin@ 4,) A/m?, calculate the current passing through

73
(a) A hemispherical shell of 20 cm radius
(b) A spherical shell of 10 cm radius

Solution
Total currentis givenas / = _[.7.(/5
Here, dS = r2sin@d¢d@a,

(a) Total current passing through a hemispherical shell of 20 cm radius
is,

o
/2 2R
I = j j —’I—(2c059dr+sin9(io ).(12sin@dodOa.)

-3

O=00=0
re(.2
PTL =
> 2 1
= f I ~—~2¢cos@r?sinO@dPdo
G Ow - o
x
> 72
= 27T X — I SINOd(sin Q)
s
(2N )
rwi) 2
4 SE 2
= —f—[“" OI =107 =31.42 A
0.2 2 "

(b) Total current passing through a spherical shell of 10 cm radius is,
1 = 2 Z TF .
I= | | —5(2cos04, +sin@ Gy).(+?sin@d¢dOd,)

rmO 1

1 . .
— 2CosOr-sin@do doe
=

Do 0.
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b
- < I sin G(I(sine)l
r = r .1

gxr | sin- &
1 = 2 <

= O

Problem3:
For the current density, J = 10zsin? ¢ 4. A/m?, find the current through the
cylindrical surfaceof r=2,1sz=5m.

Solution
Total current passing through the cylindrical surface is,

P 2x
(10zsin’ ¢ a )(rd¢dza,) =10r["7:[ Jsin-’e)dgt
= ¢=0

rel rm?

2
=I0x2x"—jx27”=2407t=754.»\

Problem4:
Determine the current density function J associated with the magnetic
field defined by
(@) H = 3i +7j +2xk A/m (Cartesian)
(b) H = 6ra, +2ra, +5a. A/m (Cylindrical)
(c) H =2pa, + 3a, +cosO a, A/m (Spherical)

(@) H=3i+7j+2xk

By Ampere’s law in Cartesian coordinates,

a, a, a.

j=VxI;'=—()— 9 2

ox v oz

3 7 2x




(b) By Ampere’s law in cylindrical coordinates,
- " :
:(l‘ LLAN a.
ad d ad
ar A9 o=
I, rfl, H.

(1 0r. OH, ] [au OH ] [aun ) au,_]-
a, - — a, 4 - a.
n : =

oz g Ir Ao

(1 9 ) . zl ) 1Y) @ )
——— (S )——-~-(7I) a, + -(67) = —(5) |G, +| — ~-~-(l"l)—~-(6l)
| r ¢ oz o= ar r )| or IO

1 -
— ) > 4ra.
’”

=d4a. A/m?

By Ampere’s law in spherical coordinates,

(i‘, dy (io
a2 2
p’sinBldp 40 00

H, pH, psinOH,

1 [ 9 oH, i\ 1 9H, 23
= ——| —(H,sin0)-—2 |G, +| — L ——(pH,) |4
psmO[f)O( $I0 % ]""+(pJ[sinO % pl¥

J=VxH=

1 d d I | o )
—(cosOsin®) — —(3 s {0 £ Y o 0
pame[a (Cotrae) e)¢( )]“ (p){smoae)( 72 )p(pcm |

+l i( 1)-1( ) |4,
P 30 2p

pLIpP

| ( cos20 ) | 3
= — G, ——c0sB0dy +—a, A/ m?
p\ sin@ P P P




Problem5:
An infinitely long conductor of radius a is placed such that its axis is

along the z-axis. The vector magnetic potential, due to a direct current
Ip flowing along a. in the conductor is given by

s of A
A=~ x>+ 2 )a. Wb/m
anoz o+ )7)a,

Find the corresponding j7 . Also confirm the result using Ampere’s law.

Solution
The magnetic flux density is given as,
a, a, a,
> - |ld 9 J l S
B=VxA= b; a_y' ’a_z' ="2’tﬁ'”0(yax-'my)

/
0 ——2y (x2
0 o Ho(x +y1)|

So, the magnetic field intensity is given as,
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We calculate the closed line integral of this field as follows.
H.dl = - (va, - \a ).(adoa,) = — add(va, —\a )(u
? ..Il'u-¢ ¢ ¢ ¢ ¢

2RU‘,

1
-t ¢¢ul¢(m - xa, ).(-singa, + cosda,)
2rna’ ’

=— ly . ¢ml¢( ~ysing — xcos Q)
2rnat

4)mlo( asin® @ + acos’ @) ex=rcos¢d and yv=rsing)

l
771'

Iy
dp=—x2m=1,
..J't 2n

d(sin® ¢ + cos® @)

Since ‘f’”"” =1y Ampere’s law is verified.
L

Problem6

Obtain an expression for the self-inductance of a toroid of circular
section with ‘N’ closely spaced turns.

Solution

Let,
r = Mean radius of the toroid
N = Number of turns
S = Radius of the coil

We have the magnetic field,
H = NI
2z r
' . N NI _,
total flux linkage perturmniis, ¢ = BA=uHA = p £ xs2 =L g2
2xr 2r
1V¢ e "J'V:S?'

2r

Hence, the self-inductance of the toroidis . =

uN282 }
2r |

L=




Problem?7:
The circular loop conductor having a radius of 0.15 m is placed in the

xy plane. This loop consists of a resistance of 20 Q as shown in Fiq. If the
magnetic flux density is

B=05sin10%ra. T

Find the current flowing through the loop.

4
A

N
o2

(@)

20Q

Circular loop conductor

Solution

Here since the loop is stationary and the magnetic field is time

only the transformer emf is induced. :
varying,

Transformer emf induced is,
B . Jd
V.==||—dS =- —(0.5sin10%a. ) (rdrdoa.)
o s=-ll5 4)(rdrdgd,
0.15 2=
=-0.5x103 cos10°¢ I I rdrd¢

r=0@=l

+ 0. 15
=—0.5% 27 x10? cole-"I[’?I

0

=-10rcoslPrx0.01125
=~3534cosl0r V




Problem8

(a) In free space, D = D, sin(@t + Bz)d,. Using Maxwell's equations, show
that

B= —-%sin( ol + fz)a,

(b) In free space, B = B,,,e/("”*l’:)[(‘.. Using Maxwell’s equations, show that

.

. OB, . 5
b - m ()_/twl+ﬂ:)a‘

Solution

(a) By Maxwell’s equation,

B parfiee space

> D
=m 9 [sin(wr + B2)]a, = —”—'ﬁcos( ot + Bz)a,
; & oz T &
—sin(wt + Bz)
&

D,B D,p

- Icos( ot + Bz)d dt = ——"—sin(wt + Bz)a,
&, ' e, '

2

1 9)
= B

—2=sin(wf + Bz)a, = _D.B X ﬂo(%] sin(@r + Bz)a, = —w#;él)"isin( ot + Bz)a,
. - . ;

0

[)"I ﬁ

_ou,D,

B= Lsin(wr + Bz)a,




(b) By Maxwell’s equation,
VxE= O = — A B, ej(@+B2)g
or or -
a, ‘ a.
_2. i .i — }” /'(,)()/i(ur+[3: Vi
Jox Jdy Oz = :
E E E,

X )

Or,

Comparing both sides, we get,

OE, OF. ) . | )
X — zZ la =—B jwel/(®+Bz)g
[ oz ox ) mJ )

oF . s o :
X = —B jwei (@ +pz) ( E_ is not a function of .\‘)

E):: m
E, = [-B, jwe/@+Bdz = —B

j@ ! eJ(@r+Bz) — _M(,j(mm-ﬁz)

n- m

— B
I.: —_— ( m

e/ mr +p:= »‘;‘




UNIT - IV
EM WAVE CHARACTERISTICS-I

Wave Equations for Conducting and Perfect Dielectric Media
Uniform Plane Waves - Definition, Relation between E & H

Wave Propagation in Lossless and Conducting Media

Wave Propagation in Good Conductors and Good Dielectrics
[llustrative Problems.

«»«a» L« »( )

1861 1862.



معادلات ماكسويل هي مجموعة من المعادلات التفاضلية الجزئية المقترنة التي تشكل، إلى جانب قانون قوة لورنتس، أساس الكهرومغناطيسية التقليدية والبصريات التقليدية والدوائر الكهربائية. توفر المعادلات نموذجًا رياضيًا للتكنولوجيات الكهربائية والبصرية وتكنولوجيا الراديو، مثل توليد القدرة الكهربائية والمحركات الكهربائية والاتصالات اللاسلكية والعدسات والرادار وما إلى ذلك. تصف معادلات ماكسويل آلية توليد الحقول الكهربائية والمغناطيسية بواسطة الشحنات والتيارات والتغييرات في الحقول. إحدى النتائج المهمة للمعادلات هي إثبات أن الحقول الكهربائية والمغناطيسية المتذبذبة تنتشر بسرعة ثابتة (سرعة الضوء c) في الفراغ. يمكن لهذه الموجات المعروفة باسم الإشعاع الكهرومغناطيسي امتلاك أطوال موجية مختلفة لإنتاج طيف كهرومغناطيسي يتراوح بين الموجات الراديوية إلى أشعة غاما. سميت المعادلات نسبةً لعالم الفيزياء والرياضيات جيمس كليرك ماكسويل، الذي نشر شكلًا مبكرًا من المعادلات التي تضمنت قانون قوة لورنتس بين عامي 1861 و1862. استخدم ماكسويل المعادلات أولًا لاقتراح أن الضوء هو ظاهرة كهرومغناطيسية.

تمتلك المعادلات شكلين رئيسيين. تتمتع معادلات ماكسويل المجهرية بقابلية شاملة للتطبيق ولكنها غير عملية للحسابات العادية. تربط هذا المعادلات الحقلين الكهربائي والمغناطيسي بالشحنة والتيار الكليين، بما في ذلك الشحنات والتيارات المعقدة في المواد على المقياس الذري. تُعرّف معادلات ماكسويل الجاهرية حقلين إضافيين جديدين يصفان سلوك المادة على نطاق كبير دون الحاجة للأخذ بعين الاعتبار شحنات المقياس الذري والظواهر الكمومية مثل اللف المغزلي. ومع ذلك، يتطلب استخدامها معاملات محددة تجريبيًا لوصف ظواهر استجابة المواد للمؤثرات الكهرومغناطيسية.

غالبًا ما يُستخدم مصطلح معادلات ماكسويل في صياغات بديلة مماثلة. من المُفضل استخدام أشكال معادلات ماكسويل المرتكزة على الكمون الكهربائي والكمون المغناطيسي في حل المعادلات بشكل صريح باعتبارها «مسألة قيمة حدية» أو «ميكانيكا تحليلية» أو للاستخدام في ميكانيكا الكم. تؤدي «صياغة موافق التغير» (في الزمكان بدلًا من المكان والزمان بشكل منفصل) إلى ظهور التوافق بين معادلات ماكسويل والنسبية الخاصة. تتوافق «معادلات ماكسويل في الزمكان المنحني»، والتي تُستخدم عادة في فيزياء الطاقة العالية وفيزياء الجاذبية، مع النسبية العامة. في الواقع، طور آينشتاين النسبية الخاصة والعامة للجمع بين سرعة الضوء الثابتة، التي تُعد إحدى نتائج معادلات ماكسويل، ومبدأ أن الحركة النسبية لها أهمية فيزيائية فقط.

مثّل نشر المعادلات توحيد الظواهر الموصوفة سابقًا: المغناطيسية والكهرباء والضوء والإشعاع المصاحب له. منذ منتصف القرن العشرين، يعلم العلماء أن معادلات ماكسويل ليست دقيقة تمامًا، بل تمثل الحد التقليدي لنظرية الكهروديناميكا الكمية الأساسية.


Wave equations:

The Maxwell's equations in the differential form are
vxF =F+22
ds

V- D=g0

v E=0
Let us consider a source free uniform medium having dielectric constant =, magnetic
permeability # and conductivity & . The above set of equations can be written as
VxH-oBrels (5.29(a))
i

—

v><'E'=—,uE (5.29(8))

VE-0 (5.29(c))
v-H=0 (5.29(d))
Using the vector identity ,
VRV %A =v-(v-ﬁ) -4
We can write from 2
VXVXE =7 (v-?é) -V'E
aH

“ it

Substituting VxH from1

?-(‘?-E)—TEE=—,&%[

But in source free( vV E= 0) medium (eq3)

VE =,HJE+,MEBB -
¢
In the same manner for equation egn 1

?X‘FXE=‘?-(‘?-EJ—‘?:‘E
- J(TXE) + E%[?XE)

N TR _#aﬁ
a | Al e

Since ¥ =0 from egn 4, we can write

— aH A*H
VH = po| — |+ | ——
“H[az]“u[af‘




These two equations

are known as wave equations.

Uniform plane waves:

A uniform plane wave is a particular solution of Maxwell's equation assuming electric
field (and magnetic field) has same magnitude and phase in infinite planes perpendicular to the
direction of propagation. It may be noted that in the strict sense a uniform plane wave doesn't
exist in practice as creation of such waves are possible with sources of infinite extent. However,
at large distances from the source, the wave front or the surface of the constant phase becomes
almost spherical and a small portion of this large sphere can be considered to plane. The
characteristics of plane waves are simple and useful for studying many practical scenarios

Let us consider a plane wave which has only Excomponent and propagating along z .
Since the plane wave will have no variation along the plane perpendicular to z
05, _ 05, _

i.e., Xy plane, dx  dy . The Helmholtz's equation reduces to,

The solution to this equation can be written as
E(2)=E'(Z)+E (2
= Bt 4+ Bl

Ey &8 arethe amplitude constants (can be determined from boundary conditions).

In the time domain, £x @2 = Re(Z,(Z)e™)

£y(z,t) =Byt cos(ar —kz )+ B cos(ax +iz)

Er &E;

assuming are real constants.

Here, £x (Z.£) = &7 cosla@ = 82) ronracents the forward traveling wave. The plot of £ (Z+£)
for several values of t is shown in the Figure below




Figure : Plane wave traveling in the + z direction
As can be seen from the figure, at successive times, the wave travels in the +z direction.

If we fix our attention on a particular point or phase on the wave (as shown by the dot) i.e. ,
w!— %z = constant

Then we see that as t is increased to ¢+ £¢ | z also should increase to z + £z so that
it + A8 —kiz + Az) = constant = gy — Sz
Or, wit = kiz

de @

Or,E k

When & —1 ,
- S -
lin — = —
we write #2% &  df = phase velocity “# .

If the medium in which the wave is propagating is free space i.e.,, &~ &+ # = £

Fra 1=C

Vp = =
Then @fthey [t
Where 'C" is the speed of light. That is plane EM wave travels in free space with the speed of
light.

The wavelength 4 is defined as the distance between two successive maxima (or minima or
any other reference points).

e (@=iz)= [@ ~k(z+A)] =27




_ 4y _ Ve
Substituting , anf  f
or, A/ =vs

Thus wavelength 4 also represents the distance covered in one oscillation of the wave.

" (z.t) = B, cos(ax +iz)

Similarly, d represents a plane wave traveling in the -z direction.

The associated magnetic field can be found as follows:
From (6.4),

By (2) = By'e ™ ™a,

— 1

H=-—VUxE
jas

_au H

@y
jr}l__: = J—
where g VHE  VE s the intrinsic  impedance of the  medium.

When the wave travels in free space

7, = 1P = 1207 = 37702
Fo is the intrinsic impedance of the free space.

In the time domain,

+

E+(z,.ﬁ] = QJ, E';cos (&J:t - ﬁz)
7
Which represents the magnetic field of the wave traveling in the +z direction.
For the negative traveling wave,
H (z,8) = —a, EL COS [mf, + ﬁz)
7

For the plane waves described, both the E & H fields are perpendicular to the direction of
propagation, and these waves are called TEM (transverse electromagnetic) waves.

The E & H field components of a TEM wave is shown in Fig below




v

Figure : E & H fields of a particular plane wave at time t.

Solved Problems:

1 The vector amplitude of an electric field associated with a plane wave that propagatesin
the negative z direction in free space is given by Ey =2ay +3ay VA
Find the magnetic field strength.

Solution:
The direction of propagation ngis —a. The vector amplitude of the magnetic field is then given

ng AE 1 ax dy az (1

)
—T:E 0 0-14= ﬁ3ax—26y)%

*noten = 1}% 120m~377Q (Appendix D — Table D.1)

2 The phasor electric field expression in a phase is given by

E= [aX +Eyay+ (2 + j5) az] e—2.3(-0.6x+0.8y)

Find the following:

1. Ey.

2. Vector magnetic field, assuming | = L, ande = &..
3. Frequency and wavelength of this wave.




Solution:

1. The general expression for a uniform plane wave propagating in an arbitrary
direction is given by

E=E,e BT

where the amplitude vector Ey, in general, has components in the x, y, and z
directions. Comparing equation 6.3 with the general field equation for the plane
wave propagating in an arbitrary direction, we obtain

B-r=Bux+By+Baz
= 3 (cos Bxx + cos Byy + cos 6,z)
=2.3(-0.6x + 0.8y + 0)

Hence, a unit vector in the direction of propagation ngis given by
nB = ‘06ax+ O.8ay.

Because the electric field Emust be perpendicular to the direction of propagation ng, it must
satisfy the following relations:

nB.E=O

Therefore, (-0.6ax + 0.8a,) [ax +Ey ay + (2 + j5) az] =0

-0.6+0.8E,=0
Hence, Ey =0.75. The electric field is given by

E=|ax+Ey ay+(2+ j5)az] o 12.3(-0.6x+08Y)

A

2. The vector magnetic field H is givenby

axy  ay az

~06 08 0
1 075 2+j5

so that

08(2 + | .
W, = 282 (404, j10.6)#1073
377




_06(2+j5) _ 3
Hy =" =(318- j7.95)+10

0.6(0.75) +0.8

H _06(0.75) +0.¢

Z = -3.31x1073
377

The vector magnetic field is then given by

H= (HX ay+ Hy ay+H, az) e—J23(-0.6x+08y)

The wavelength A is given by

2n 21
= =2.73m

B 23

A=

and the frequency

¢ 3*108
f="= — 0.11GHz

A 273







