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ELECTROMAGNETIC THEORY 

ELECTROMAGNETIC THEORY 

COURSE OBJECTIVES: 

 
1) To introduce the student to the coordinate system and its implementation to electro 

magnetics. 

2) To elaborate the concept of electromagnetic waves and their practical applications. 

3) To study the propagation, reflection, and refraction of plane waves in different media. 
4) To Study time varying Maxwell equations and their applications in electromagnetic 

problems 

5) Demonstrate the reflection and refraction of waves at boundaries 

Syllabus of Electromagnetic theory 

CHAPTER ONE : (5 hours) 

Vector Analysis & Co-ordinate system: Vector analysis- Representation, operations-Dot product 

and cross product, Basics of coordinate system- rectangular, cylindrical and spherical co-ordinate 

systems. 

Electrostatics one: Coulomb’s Law, Electric Field Intensity - Fields due to Different Charge 

Distributions, Electric Flux Density; Illustrative Problems. 

 

CHAPTER TWO: (5 hours) 

 

Electrostatics two: Gauss Law and Applications, Electric Potential, Relations Between E and V, 

Maxwell's Equations for Electrostatic Fields, Dielectric Constant, Isotropic and Homogeneous 

Dielectrics, Continuity Equation, Relaxation Time, Poisson's and Laplace's Equations, Boundary 

conditions-conductor-Dielectric and Dielectric-Dielectric; Illustrative Problems. 

 

CHAPTER THREE: (5 hours) 

Magneto statics: Biot - Savart's Law , Ampere's Circuital Law and Applications, Magnetic Flux 

Density, Maxwell's Equations for Magneto static Fields, Magnetic Scalar and Vector Potentials, 

Ampere’s Force law , Faraday's Law, Displacement Current Density, Maxwell's Equations for 

timevarying fields, Illustrative Problems. 

 

CHAPTER FOUR: (5 hours) 

EM Wave Characteristics-I : Wave Equations for Conducting and Perfect Dielectric Media, 

Uniform Plane Waves - Definition, Relation Between E & H, Wave Propagation in Lossless and 

Conducting Media, Wave Propagation in Good Conductors and Good Dielectrics, Illustrative 

Problems. 

 

CHAPTER FIVE: (5 hours) 

EM Wave Characteristics – II: Reflection and Refraction of Plane Waves – Normal incidence 

for both perfect Conductors and perfect Dielectrics, Brewster Angle, Critical Angle and Total 

Internal Reflection, Surface Impedance, Poynting Vector and Poynting Theorem – Applications, 

Illustrative Problems. 
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CHAPTER ONE 
Contents 

Vector Analysis & Co-ordinate system 

 Vector analysis 

 Representation 

 Operations-Dot product and cross product 

 Basics of coordinate system 

 Rectangular coordinate system 

 Cylindrical coordinate system 

 Spherical coordinate system 

Electrostatics one: 

 Coulomb’s Law 
 Electric Field Intensity 

 Fields due to Different Charge Distributions 

 Electric Flux Density 

 Problems. 
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Vector Analysis 

 
Introduction: 

Vector Algebra is a part of algebra that deals with the theory of vectors and vector spaces. 

Most of the physical quantities are either scalar or vector quantities. 

 

Scalar Quantity: 

Scalar is a number that defines magnitude. Hence a scalar quantity is defined as a 

quantity that has magnitude only. A scalar quantity does not point to any direction i.e. a 

scalar quantity has no directional component. 

For example when we say, the temperature of the room is 30o C, we don‘t specify the direction. 

Hence examples of scalar quantities are mass, temperature, volume, speed etc. 

A scalar quantity is represented simply by a letter – A, B, T, V, S. 

 

Vector Quantity: 

 

A Vector has both a magnitude and a direction. Hence a vector quantity is a 

quantity that has both magnitude and direction. 

Examples of vector quantities are force, displacement, velocity, etc. 

A vector quantity is represented by a letter with an arrow over it or a bold letter. 

 

Unit Vectors: 

When a simple vector is divided by its own magnitude, a new vector is created known as 

the unit vector. A unit vector has a magnitude of one. Hence the name - unit vector. 

A unit vector is always used to describe the direction of respective vector. 

 

 

 

Hence any vector can be written as the product of its magnitude and its unit vector. Unit Vectors 

along the co-ordinate directions are referred to as the base vectors. For example unit vectors 

along X, Y and Z directions are ax, ay and az respectively. 

Position Vector / Radius Vector (̅𝑂̅̅̅̅𝑃̅̅ ): 
 

A Position Vector / Radius vector define the position of a point(P) in space relative to 

the origin(O).Hence Position vector is another way to denote a point in space. 

𝑂̅̅̅̅𝑃̅̅= 𝑥𝑎̅𝑥̅ + 𝑦𝑎̅𝑦̅ + 𝑧𝑎̅̅𝑧 
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Displacement Vector 

 

Displacement Vector is the displacement or the shortest distance from one point to another. 

 

Vector Multiplication 

When two vectors are multiplied the result is either a scalar or a vector depending on how 

they are multiplied. The two important types of vector multiplication are: 

 Dot Product/Scalar Product (A.B) 

 Cross product (A x B) 

 

1. DOT PRODUCT (A. B): 

Dot product of two vectors A and B is defined as: 

𝐴̅̅. 𝐵̅̅= │𝐴̅̅││𝐵̅̅│ cos 𝜃𝐴̅𝐵̅ 

Where 𝜃𝐴̅𝐵̅ is the angle formed between A and B. 

Also 𝜃𝐴̅𝐵̅ ranges from 0 to π i.e. 0 ≤ 𝜃𝐴̅𝐵̅ ≤ π 

The result of A.B is a scalar, hence dot product is also known as Scalar Product. 

 

Properties of Dot Product: 

1. If A = (Ax, Ay, Az) and B = (Bx, By, Bz) then 

 

𝐴̅̅. 𝐵̅̅ = AxBx + AyBy + AzBz 

 

2. 𝐴̅̅. 𝐵̅̅ = |A| |B| , if cos𝜃𝐴̅𝐵̅=1 which means θAB = 00 

This shows that A and B are in the same direction or we can also say that A and B are 

parallel to each other. 

3. 𝐴̅̅. ̅ = - |A| |B|, if cos 𝜃𝐴̅𝐵̅ =-1 which means 𝜃𝐴̅𝐵̅ = 1800. 

This shows that A and B are in the opposite direction or we can also say that A and B are 
antiparallel to each other. 

54..  𝐴̅̅. 𝐵̅̅= 0, if cos 𝜃𝐴̅𝐵̅ =0 which means 𝜃𝐴̅𝐵̅ = 900. 

This shows that A and B are orthogonal or perpendicular to each other. 

5. Since we know the Cartesian base vectors are mutually perpendicular to each other, we have 

𝑎̅𝑥̅ . 𝑎̅̅𝑥 = 𝑎̅̅𝑦. 𝑎̅̅𝑦 = 𝑎̅̅𝑧 . 𝑎̅̅ = 1 
 

𝑎̅𝑥̅ . 𝑎̅̅𝑦 = 𝑎̅̅𝑦. 𝑎̅̅𝑧 = 𝑎̅̅𝑧 . 𝑎̅̅ = 0 
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2. Cross Product (A X B): 

Cross Product of two vectors A and B is given as: 

 

𝐴̅̅𝑋𝐵̅̅= │𝐴̅̅││𝐵̅̅│ sin  ̅ 

Where 𝜃𝐴̅𝐵̅ is the angle formed between A and B and 𝑎̅̅ is a unit vector normal to both A and B. 

Also θ ranges from 0 to π i.e. 0 ≤ 𝜃𝐴̅𝐵̅≤ π 

The cross product is an operation between two vectors and the output is also a vector. 

 

Properties of Cross Product: 

 

1. If A = (Ax, Ay, Az) and B = (Bx, By, Bz) then, 

 

The resultant vector is always normal to both the vector A and B. 

 

2. 𝐴̅ ̅𝑋 𝐵̅̅ = 0, if sin 𝜃𝐴̅𝐵̅ = 0 which means 𝜃𝐴̅𝐵̅ = 00 or 1800; 

This shows that A and B are either parallel or antiparallel to each other. 

 

3. . 𝐴̅̅𝑋𝐵̅̅=│𝐴̅̅││𝐵̅̅│̅𝑎̅𝑁, if sin 𝜃𝐴̅𝐵̅ = 0 which means 𝜃𝐴̅𝐵̅ = 900. 

This shows that A and B are orthogonal or perpendicular to each other. 

 

4. Since we know the Cartesian base vectors are mutually perpendicular to each other, we have 

𝑎̅̅ 𝑥 𝑋 𝑎̅̅ 𝑥 = 𝑎̅̅ 𝑦 𝑋 𝑎̅̅ 𝑦 = 𝑎̅̅ 𝑧 𝑋̅𝑎̅𝑧 = 0 

𝑎̅̅ 𝑥𝑋 𝑎̅̅ 𝑦 = 𝑎̅̅ 𝑧 , 𝑎̅̅ 𝑦 𝑋 𝑎̅̅ 𝑧 = 𝑎̅̅ 𝑥 , 𝑎̅̅ 𝑧𝑋 𝑎̅̅ 𝑥 = 𝑎̅̅ 𝑦 
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CO-ORDINATE SYSTEMS: 

 

Co-Ordinate system is a system of representing points in a space of given dimensions by 

coordinates, such as the Cartesian coordinate system or the system of celestial longitude and 

latitude. 

In order to describe the spatial variations of the quantities, appropriate coordinate system is 

required. A point or vector can be represented in a curvilinear coordinate system that may be 

orthogonal or non-orthogonal. An orthogonal system is one in which the coordinates are mutually 

perpendicular to each other. 

The different co-ordinate systems available are: 

 Cartesian or Rectangular co-ordinate system.(Example: Cube, Cuboid) 

 Circular Cylindrical co-ordinate system.(Example : Cylinder) 

 Spherical co-ordinate system. (Example: Sphere) 

The choice depends on the geometry of the application. 

A set of 3 scalar values that define position and a set of unit vectors that define direction form 

a co-ordinate system. The 3 scalar values used to define position are called co-ordinates. All 

coordinates are defined with respect to an arbitrary point called the origin. 

 

1. Cartesian Co-ordinate System / Rectangular Co-ordinate System (x,y,z) 
 

 

 

A Vector in Cartesian system is represented as (Ax, Ay, Az) Or 

𝐴̅̅ = 𝐴̅𝑥 𝑎̅̅ 𝑥 + 𝐴̅ 𝑦 𝑎̅̅ 𝑦 + 𝐴̅𝑧 𝑎̅̅ 𝑧 

Where 𝑎̅̅ , ̅ 𝑦 and 𝑎̅̅𝑧are the unit vectors in x, y, z direction respectively. 
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Range of the variables: 

It defines the minimum and the maximum value that x, y and z can have in Cartesian system. 

-∞ ≤ x,y,z ≤ ∞ 

Differential Displacement / Differential Length (dl): 

It is given as 

 

𝑑 = 𝑑𝑥̅𝑎̅𝑥 + 𝑑𝑦̅𝑎̅𝑦 + 𝑑𝑧̅𝑎̅𝑧 

Differential length for a line parallel to x, y and z axis are respectively given as: 

 

dl = 𝑑𝑥̅𝑎̅𝑥---( For a line parallel to x-axis). 

dl = 𝑑𝑦̅𝑎̅𝑦 ---(For a line Parallel to y- axis). 

dl = 𝑑𝑧̅𝑎̅𝑧 ---( For a line parallel to z-axis). 

If there is a wire of length L in z-axis, then the differential length is given as dl = dz az. Similarly 

if the wire is in y-axis then the differential length is given as dl = dy ay. 

Differential Normal Surface (ds): 

Differential surface is basically a cross product between two parameters of the surface. 

The differential surface (area element) is defined as 
̅𝑑̅̅𝑠 = 𝑑𝑠 𝑎̅̅ 𝑁 

Where𝑎̅̅, is the unit vector perpendicular to the surface. 

For the 1st figure, 

2nd figure, 

 

 

3rd figure, 

 

 

Differential Volume: 

The differential volume element (dv) can be expressed in terms of the triple product. 

𝑑𝑣 = 𝑑𝑥𝑑𝑦𝑑𝑧 

𝑑̅̅𝑠= 𝑑𝑦𝑑𝑧̅𝑎̅ 

𝑑̅̅𝑠= 𝑑𝑥𝑑𝑧̅𝑎̅ 

𝑑̅̅𝑠= 𝑑𝑥𝑑𝑦̅𝑎̅𝑧 
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2. Circular Cylindrical Co-ordinate System 

 
A Vector in Cylindrical system is represented as (Ar, AǾ, Az) or 

𝐴̅̅ = 𝐴̅ 𝑟 𝑎̅̅ 𝑟 + 𝐴̅∅̅𝑎̅∅ + 𝐴̅𝑧 𝑎̅̅ 𝑧 

Where𝑎̅̅𝑟 , 𝑎̅̅∅  and 𝑎̅̅𝑧  are the unit vectors in r, Φ and z directions respectively. 

The physical significance of each parameter of cylindrical coordinates: 

1. The value r indicates the distance of the point from the z-axis. It is the radius of the 

cylinder. 

2. The value Φ, also called the azimuthal angle, indicates the rotation angle around the z- 

axis. It is basically measured from the x axis in the x-y plane. It is measured anti 

clockwise. 

3. The value z indicates the distance of the point from z-axis. It is the same as in the 

Cartesian system. In short, it is the height of the cylinder. 
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Range of the variables: 

It defines the minimum and the maximum values of r, Φ and z. 

0 ≤ r ≤ ∞ 

0 ≤ Φ ≤ 2π 
-∞ ≤ z ≤ ∞ 

Figure shows Point P and Unit vectors in Cylindrical Co-ordinate System. 

 

 

Differential Displacement / Differential Length (dl): 

It is given as 

 

𝑑 = 𝑑𝑟̅𝑎̅𝑟 + 𝑟𝑑𝜑̅𝑎̅̅ 𝜑̅ + 𝑑𝑧̅𝑎̅𝑧 

Differential length for a line parallel to r, Φ and z axis are respectively given as: 

dl = 𝑑𝑟̅𝑎̅𝑟---( For a line parallel to r-direction). 

dl = 𝑟𝑑𝜑̅̅𝑎̅𝜑̅ ---(For a line Parallel to Φ-direction). 

dl = 𝑑𝑧̅𝑎̅𝑧 ---( For a line parallel to z-axis). 

 

Differential Normal Surface (ds): 

Differential surface is basically a cross product between two parameters of the surface. 

The differential surface (area element) is defined as 
̅𝑑̅̅𝑠= 𝑑𝑠̅𝑎̅𝑁 

Where𝑎̅̅ , is the unit vector perpendicular to the surface. 

 

This surface describes a circular disc. Always remember- To define a circular disk we 

need two parameter one distance measure and one angular measure. An angular parameter 

will always give a curved line or an arc. 

In this case dΦ is measured in terms of change in arc. 

Arc is given as: Arc= radius × angle 
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̅𝑑̅̅𝑠 = 𝑟𝑑𝑟𝑑𝜑̅̅𝑎̅𝑧 

̅𝑑̅̅𝑠 = 𝑑𝑟𝑑𝑧̅𝑎̅𝜑̅ 

̅𝑑̅̅𝑠 = 𝑟𝑑𝑟𝑑𝜑̅̅𝑎̅𝑟 

 
Differential Volume: 

The differential volume element (dv) can be expressed in terms of the triple product. 

𝑑𝑣 = 𝑟𝑑𝑟𝑑𝜑̅𝑑𝑧 

3. Spherical coordinate System: 

Spherical coordinates consist of one scalar value (r), with units of distance, while the other two 

scalar values (θ, Φ) have angular units (degrees or radians). 

A Vector in Spherical System is represented as (Ar ,AӨ, AΦ) or 

𝐴̅̅ = 𝐴̅𝑟 𝑎̅̅ 𝑟 + 𝐴̅ 𝜃 𝑎̅̅ 𝜃 + 𝐴̅𝜑̅ 𝑎̅̅ 𝜑̅ 

Where 𝑎̅̅ ,̅ 𝜃 and 𝑎̅̅ 𝜑̅ are the unit vectors in r, θ and Φ direction 

respectively. The physical significance of each parameter of spherical 

coordinates: 

1. The value r expresses the distance of the point from origin (i.e. similar to 

altitude). It is the radius of the sphere. 

2. The angle θ is the angle formed with the z- axis (i.e. similar to latitude). It is also 

called the co-latitude angle. It is measured clockwise. 

3. The angle Φ, also called the azimuthal angle, indicates the rotation angle around the z- 

axis (i.e. similar to longitude). It is basically measured from the x axis in the x-yplane. 

It is measured counter-clockwise. 

Range of the variables: 

 

It defines the minimum and the maximum value that r, θ and υ can have in spherical co-ordinate 

system. 

0 ≤ r ≤ ∞ 
0 ≤ θ ≤ π 
0 ≤ Φ≤ 2π 
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Differential length: 
It is given as 

𝑑 = 𝑑𝑟̅𝑎̅ + 𝑟𝑑𝜃̅𝑎̅ + 𝑟 sin 𝜃 𝑑𝜑̅̅𝑎̅ 

 
Differential lengths for a line parallel to r, θ and Φ axis are respectively given as: 

dl = 𝑑𝑟̅𝑎̅--(For a line parallel to r axis) 

dl = 𝑟𝑑𝜃 𝑎̅̅ 𝜃---( For a line parallel to θ direction) 

 

dl = 𝑟 sin 𝜃 𝑑𝜑̅̅𝑎̅𝜑̅ --(For a line parallel to Φ direction) 

 

 

Differential Normal Surface (ds): 

Differential surface is basically a cross product between two parameters of the surface. 

The differential surface (area element) is defined as 
̅𝑑̅̅𝑠= 𝑑𝑠̅𝑎̅𝑁 

Where𝑎̅̅, is the unit vector perpendicular to the surface. 

̅𝑑̅̅𝑠 = 𝑟𝑑𝑟𝑑𝜃̅𝑎̅𝜑̅ 

̅𝑑̅̅𝑠 = 𝑟2 sin 𝜃 𝑑𝜑̅𝑑𝜃̅𝑎̅𝑟 

̅𝑑̅̅𝑠 = 𝑟 sin 𝜃 𝑑𝑟𝑑𝜑̅̅𝑎̅𝜃 

 
Differential Volume: 

The differential volume element (dv) can be expressed in terms of the triple product. 

𝑑𝑣 = 𝑟2 sin 𝜃 𝑑𝑟𝑑𝜑̅𝑑𝜃 
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Coordinate transformations: 

 

 

 

 



Chapter One Vector analysis 

14 

 

 

 

 

 

 

 

 

 



Chapter One Vector analysis 

15 

 

 

 

 

Del operator: 

 
Del is a vector differential operator. The del operator will be used in for differential operations 

throughout any course on field theory. The following equation is the del operator for different 

coordinate systems. 

 

Gradient of a Scalar: 

• The gradient of a scalar field, V, is a vector that represents both the magnitude and the 

direction of the maximum space rate of increase of V. 
 

• To help visualize this concept, take for example a topographical map. Lines on the map 

represent equal magnitudes of the scalar field. The gradient vector crosses map at the location 

where the lines packed into the most dense space and perpendicular (or normal) to them. The 

orientation (up or down) of the gradient vector is such that the field is increased in magnitude 

along that direction. 

-Fundamental properties of the gradient of a scalar field 
– The magnitude of gradient equals the maximum rate of change in V per unit distance 

– Gradient points in the direction of the maximum rate of change in V 

– Gradient at any point is perpendicular to the constant V surface that passes through that 
point 

– The projection of the gradient in the direction of the unit vector a, is 

and is called the directional derivative of V along a. This is the rate of change of V 
in the direction of a. 

– If A is the gradient of V, then V is said to be the scalar potential of A. 



Chapter One Vector analysis 

16 

 

 

 

 

Divergence of a Vector: 

• The divergence of a vector, A, at any given point P is the outward flux per unit volume as 

volume shrinks about P. 

Divergence Theorem: 
• The divergence theorem states that the total outward flux of a vector field, A, through the 

closed surface, S, is the same as the volume integral of the divergence of A. 

• This theorem is easily shown from the equation for the divergence of a vector field. 

 

 
Curl of a Vector: 

The curl of a vector, A is an axial vector whose magnitude is the maximum circulation of A 

per unit area as the area tends to zero and whose direction is the normal direction of the area 

when the area is oriented to make the circulation maximum. 

-Curl of a vector in each of the three primary coordinate systems are, 

 



Chapter One Vector analysis 

17 

 

 

 

 

 

Stokes Theorem: 

• Stokes theorem states that the circulation of a vector field A, around a closed path, L is equal 

to the surface integral of the curl of A over the open surface S bounded by L. This theorem has 

been proven to hold as long as A and the curl of A are continuous along the closed surface S of 

a closed path L 

• This theorem is easily shown from the equation for the curl of a vector field. 

 

Classification of vector field: 

The vector field, A, is said to be divergence less ( or solenoidal) if  . 

– Such fields have no source or sink of flux, thus all the vector field lines entering an enclosed 
surface, S, must also leave it. 

– Examples include magnetic fields, conduction current density under steady state, and 
imcompressible fluids 

– The following equations are commonly utilized to solve divergenceless field problems 

 

The vector field, A, is said to be potential (or irrotational) if  

– Such fields are said to be conservative. Examples include gravity, and electrostatic fields. 

– The following equations are commonly used to solve potential field problems; 
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Electrostatics one: 

Introduction: 

 

Electromagnetic theory is concerned with the study of charges at rest and in motion. 

Electromagnetic principles are fundamental to the study of electrical engineering. 

Electromagnetic theory is also required for the understanding, analysis and design of various 

electrical, electromechanical and electronic systems. 

Electromagnetic theory can be thought of as generalization of circuit theory. Electromagnetic 

theory deals directly with the electric and magnetic field vectors whereas circuit theory deals 

with the voltages and currents. Voltages and currents are integrated effects of electric and 

magnetic fields respectively. 

Electromagnetic field problems involve three space variables along with the time variable and 

hence the solution tends to become correspondingly complex. Vector analysis is the required 

mathematical tool with which electromagnetic concepts can be conveniently expressed and best 

comprehended. Since use of vector analysis in the study of electromagnetic field theory is 

prerequisite, first we will go through vector algebra. 

Applications of Electromagnetic theory: 

This subject basically consist of static electric fields, static magnetic fields, time-varying fields & 

it’ applications. One of the most common applications of electrostatic fields is the deflection of a 

charged particle such as an electron or proton in order to control it’s trajectory. The deflection is 

achieved by maintaining a potential difference between a pair of parallel plates. This principle is 

used in CROs, ink-jet printer etc. Electrostatic fields are also used for sorting of minerals for 

example in ore separation. Other applications are in electrostatic generator and electrostatic 

voltmeter. 

The most common applications of static magnetic fields are in dc machines. Other 

applications include magnetic deflection, magnetic separator, cyclotron, Hall Effect sensors, 

magneto hydrodynamic generator etc. 

Electrostatics is a branch of science that involves the study of various phenomena caused by 

electric charges that are slow-moving or even stationary. Electric charge is a fundamental 

property of matter and charge exist in integral multiple of electronic charge. Electrostatics as the 

study of electric charges at rest. 

The two important laws of electrostatics are 

 Coulomb‘s Law. 

 Gauss‘s Law. 

 

Both these laws are used to find the electric field due to different charge configurations. 
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Coulomb‘s law is applicable in finding electric field due to any charge configurations whereas 

Gauss‘s law is applicable only when the charge distribution is symmetrical. 

Coulomb's Law 

Coulomb's Law states that the force between two point charges Q1and Q2 is directly 

proportional to the product of the charges and inversely proportional to the square of the distance 

between them. 

A point charge is a charge that occupies a region of space which is negligibly small compared to 

the distance between the point charge and any other object. 

Point charge is a hypothetical charge located at a single point in space. It is an idealized model 

ofa particle having an electric charge. 

 

 

Mathematically, , where k is the proportionality constant. 

In SI units, Q1 and Q2 are expressed in Coulombs(C) and R is in meters. 

Force F is in Newtons (N) and ,   is called the permittivity of free space. 

 

(We are assuming the charges are in free space. If the charges are any other dielectric medium, 

we will use  instead where  is called the relative permittivity or the dielectric 

constant of the medium). 

 

 

 

Therefore ................................................... (1) 

 

 

As shown in the Figure 1 let the position vectors of the point charges Q1and Q2 are given by 

and . Let represent the force on Q1 due to charge Q2. 
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Fig 1: Coulomb's Law 

 

The charges are separated by a distance of  . We define the unit vectors as 

and 

 can be defined as  . 

 

Similarly the force on Q1 due to charge Q2 can be calculated and if represents this force then 

we can write 

When we have a number of point charges, to determine the force on a particular charge due to all 

other  charges,  we  apply principle  of superposition.  If we  have  N  number  of charges 

 

Q1,Q2,.........QN located respectively at the points represented by the position vectors , ,...... 

, the force experienced by a charge Q located at  is given by, 

 

Field: 

 

A field is a function that specifies a particular physical quantity everywhere in a region. 

Depending upon the nature of the quantity under consideration, the field may be a vector or a 

scalar field. Example of scalar field is the electrostatic potential in a region while electric or 

magnetic fields at any point is the example of vector field. 
Static Electric Fields: 

Electrostatics can be defined as the study of electric charges at rest. Electric fields have their 

sources in electric charges. The fundamental & experimentally proved laws of electrostatics 

are Coulomb’s law & Gauss’s theorem. 
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Electric Field: 

Electric field due to a charge is the space around the unit charge in which it experiences a force. 

Electric field intensity or the electric field strength at a point is defined as the force per unit 

charge. 

Mathematically, 

E = F / Q 

OR 

F = E Q 

The force on charge Q is the product of a charge (which is a scalar) and the value of the 

electric field (which is a vector) at the point where the charge is located. That is 

 or,  

 

The electric field intensity E at a point r (observation point) due a point charge Q located at  

(source point) is given by: 

 

 

For a collection of N point charges Q1 ,Q2 ,.........QN located at  ,  ,. ........ , the electric field 

intensity at point  is obtained as 

 

The expression (6) can be modified suitably to compute the electric filed due to a continuous 

distribution of charges. 

In figure 2 we consider a continuous volume distribution of charge (t) in the region denoted as 

the source region. 

For an elementary charge , i.e. considering this charge as point charge, we can 

write the field expression as: 
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Fig 2: Continuous Volume Distribution of Charge 

When this expression is integrated over the source region, we get the electric field at the point P 

due to this distribution of charges. Thus the expression for the electric field at P can be written 

as: 

 

 

...............volume charge........................... 

Similar technique can be adopted when the charge distribution is in the form of a line charge 

density or a surface charge density. 

 

 

.....................line charge ................ 

 

 

 

..................surface charge...................... 

 

 

Electric Lines of Forces: 

Electric line of force is a pictorial representation of the electric field. 

Electric line of force (also called Electric Flux lines or Streamlines) is an imaginary straight or 

curved path along which a unit positive charge tends to move in an electric field. 

 

Properties Of Electric Lines Of Force: 

1. Lines of force start from positive charge and terminate either at negative 

charge or move to infinity. 

2. Similarly lines of force due to a negative charge are assumed to start at 

infinity and terminate at the negative charge. 
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3. The number of lines per unit area, through a plane at right angles to the lines, is 

proportional to the magnitude of E. This means that, where the lines of force are close 

together, E is large and where they are far apart E is small. 

 

4. If there is no charge in a volume, then each field line which enters it must also leave it. 

 

5. If there is a positive charge in a volume then more field lines leave it than enter it. 

 

6. If there is a negative charge in a volume then more field lines enter it than leave it. 

 

7. Hence we say Positive charges are sources and Negative charges are sinks of the field. 

 

8. These lines are independent on medium. 

 

9. Lines of force never intersect i.e. they do not cross each other. 

 
10. Tangent to a line of force at any point gives the direction of the electric field E at that 

point. 

 

 

Electric flux density: 

As stated earlier electric field intensity or simply ‘Electric field' gives the strength of the field at 

a particular point. The electric field depends on the material media in which the field is being 

considered. The flux density vector is defined to be independent of the material media (as we'll 

see that it relates to the charge that is producing it).For a linear isotropic medium under 

consideration; the flux density vector is defined as: 

 

We define the electric flux as 
 

ELECTROMAGNETIC THEORY 
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Solved problems: 
Problem1: 

 

Problem1: 

 

Problem-2 

 

Problem-3 

 

Problem-4 
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Problem-6 
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Gauss's Law: 

Gauss's law is one of the fundamental laws of electromagnetism and it states that the total 

electric flux through a closed surface is equal to the total charge enclosed by the surface. 

 

 
 

Fig 3: Gauss's Law 

Let us consider a point charge Q located in an isotropic homogeneous medium of dielectric 

constant . The flux density at a distance r on a surface enclosing the charge is given by 

 

If we consider an elementary area ds, the amount of flux passing through the elementary area is 

given by 

 

 

 
But , is the elementary solid angle subtended by the area at the location of Q. 

Therefore we can write  

For a closed surface enclosing the charge, we can write   

which can seen to be same as what we have stated in the definition of Gauss's Law. 
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This equation is called the 1st Maxwell's equation of electrostatics. 

 

 
Application of Gauss's Law: 

 
Gauss's law is particularly useful in computing     or    where the charge distribution has some 

symmetry. We shall illustrate the application of Gauss's Law with some examples. 

1.    due to an infinite line charge 

As the first example of illustration of use of Gauss's law, let consider the problem of 

determination of the electric field produced by an infinite line charge of density LC/m. Let us 

consider a line charge positioned along the z-axis as shown in Fig. 4(a)  . Since the line charge is 

assumed to be infinitely long, the electric field will be of the form as shown in Fig. 4(b)   

If we consider a close cylindrical surface as shown in Fig. 2.4(a), using Gauss's theorm we can 

write, 

Considering the fact that the unit normal vector to areas S1 and S3 are perpendicular to the 

electric field, the surface integrals for the top and bottom surfaces evaluates to zero. Hence we 
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Can write, 
 

 

 

 

Fig 4: Infinite Line Charge 
 

2. Infinite Sheet of Charge 

As a second example of application of Gauss's theorem, we consider an infinite charged sheet 

 

covering the x-z plane as shown in figure 5. Assuming a surface charge density of   for the 

infinite surface charge, if we consider a cylindrical volume having sides    placed symmetrically 

as shown in figure 5, we can write: 
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Fig 5: Infinite Sheet of Charge 

 
 

It may be noted that the electric field strength is independent of distance. This is true for the 

infinite plane of charge; electric lines of force on either side of the charge will be perpendicular 

to the sheet and extend to infinity as parallel lines. As number of lines of force per unit area gives 

the strength of the field, the field becomes independent of distance. For a finite charge sheet, the 

field will be a function of distance. 

 
3. Uniformly Charged Sphere 

Let us consider a sphere of radius r0 having a uniform volume charge density of rv C/m3. To 

determine everywhere, inside   and outside the sphere,   we construct Gaussian surfaces of 

radius r < r0 and r > r0 as shown in Fig. 6 (a) and Fig. 6(b). 

For the region ; the total enclosed charge will be 
 

 

 

                                                                Fig 6: Uniformly Charged Sphere 
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By applying Gauss's theorem, 
 

Therefore 

 

 
For the region ; the total enclosed charge will be 

 

By applying Gauss's theorem, 

 

 
Electric Potential / Electrostatic Potential (V): 

If a charge is placed in the vicinity of another charge (or in the field of another charge), it 

experiences a force. If a field being acted on by a force is moved from one point to another, then 

work is either said to be done on the system or by the system. 

 
Say a point charge Q is moved from point A to point B in an electric field E, then the 

work done in moving the point charge is given as: 

WA→B = - ∫AB (F . dl) = - Q ∫AB(E . dl) 

 

where the   –   sign indicates that the work is done on the system by an external agent. 
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The work done per unit charge in moving a test charge from point A to point B is the 

electrostatic potential difference between the two points(VAB). 

VAB = WA→B / Q 
 

- ∫AB(E . dl) 

 

- ∫InitialFinal (E . dl) 

If the potential difference is positive, there is a gain in potential energy in the movement, 

external agent performs the work against the field. If the sign of the potential difference is 

negative, work is done by the field. 

 

The electrostatic field is conservative i.e. the value of the line integral depends only on 

end points and is independent of the path taken. 
 

 
- Since the electrostatic field is conservative, the electric potential can also be written as: 

 

𝐵 

𝑉𝐴𝐵  = − ∫  ̅𝐸 . 𝑑̅𝑙 
𝐴 

 

𝑝0 

𝑉𝐴𝐵 = −∫ 
𝐴 

𝐵 

𝐵 

̅𝐸 . 𝑑̅𝑙 − ∫  ̅𝐸 . 𝑑̅𝑙 
𝑝0 

𝐴 

𝑉𝐴𝐵  = − ∫  ̅𝐸 . 𝑑̅𝑙 +  ∫  ̅𝐸 . 𝑑̅𝑙 
𝑝0 𝑝0 

 
𝑉𝐴𝐵 = 𝑉𝐵 − 𝑉𝐴 
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Thus the potential difference between two points in an electrostatic field is a scalar field that 

is defined at every point in space and is independent of the path taken. 

 

- The work done in moving a point charge from point A to point B can be written as: 

WA→B = - Q [VB  – VA] =  −𝑄 ∫
𝐵 
𝐸̅ . 𝑑̅𝑙 
𝐴 

- Consider a point charge Q at origin O. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Now if a unit test charge is moved from point A to Point B, then the potential difference between 

them is given as: 
 

 
- Electrostatic potential or Scalar Electric potential (V) at any point P is given by: 

 
 

𝑃 

𝑉 = − ∫  𝐸̅ . 𝑑̅𝑙 
𝑃0 
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The reference point Po is where the potential is zero (analogues to ground in a circuit). 

The reference is often taken to be at infinity so that the potential of a point in space is 

defined as 

𝑃 

𝑉 = − ∫  𝐸̅ . 𝑑̅𝑙 
∞ 

 

Basically potential is considered to be zero at infinity. Thus potential at any point ( rB = r) due 

to a point charge Q can be written as the amount of work done in bringing a unit positive 

charge frominfinity to that point (i.e. rA → ∞) 

 
Electric potential (V) at point r due to a point charge Q located at a point with position vector 

r1 is given as: 
 

Similarly for N point charges Q1, Q2 ….Qn located at points with position vectors r1, 

r2, r3…..rn, theelectric potential (V) at point r is given as: 
 

 
The charge element dQ and the total charge due to different charge distribution is given as: 

 
dQ = ρldl → Q = ∫L (ρldl) → (Line Charge) 

 

dQ = ρsds → Q = ∫S (ρsds) → (Surface Charge) 

 
dQ = ρvdv → Q = ∫V (ρvdv) → (Volume Charge) 
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Second Maxwell’s Equation of Electrostatics: 

The work done per unit charge in moving a test charge from point A to point B is the 

electrostatic potential difference between the two points(VAB). 

VAB = VB – VA 

Similarly, 

VBA = VA – VB 

 
Hence it‘s clear that potential difference is independent of the path taken. Therefore 

VAB = - VBA 

 
VAB+ VBA = 0 

 

∫AB (E . dl) + [ - ∫BA (E . dl) ] = 0 
 
 

 
The above equation is called the second Maxwell‘s Equation of Electrostatics in integral form.. 

The above equation shows that the line integral of Electric field intensity (E) along a closed path 

is equal to zero. 

In simple words―No work is done in moving a charge along a closed path in an electrostatic 

field. 

Applying Stokes‘ Theorem to the above Equation, we have: 
 

If the Curl of any vector field is equal to zero, then such a vector field is called an Irrotational or 

Conservative Field. Hence an electrostatic field is also called a conservative field. 
The above equation is called the second Maxwell‘s Equation of Electrostatics in differential 
form. 
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Relationship Between Electric Field Intensity (E) and Electric Potential (V): 

Since Electric potential is a scalar quantity, hence dV (as a function of x, y and z variables) can 

be written as: 
 

Hence the Electric field intensity (E) is the negative gradient of Electric potential (V). 
The negative sign shows that E is directed from higher to lower values of V i.e. E is opposite to 

the direction in which V increases. 
 

Work Done To Assemble Charges: 

 
In case, if we wish to assemble a number of charges in an empty system, work is required to do 

so. Also electrostatic energy is said to be stored in such a collection. 
 

Let us build up a system in which we position three point charges Q1, Q2 and Q3 at position r1, r2 

and r3 respectively in an initially empty system. 

Consider a point charge Q1 transferred from infinity to position r1 in the system. It takes no 

work to bring the first charge from infinity since there is no electric field to fight against (as the 

system is empty i.e. charge free). 

Hence, W1 = 0 J 

 
Now bring in another point charge Q2 from infinity to position r2 in the system. In this case we 

have to do work against the electric field generated by the first charge Q1. 

Hence, W2 = Q2 V21 

 

Where:  V21 is the electrostatic potential at point r2 due to Q1. 

 
 

- Work done W2 is also given as: 
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Now bring in another point charge Q3 from infinity to position r3 in the system. In this case 

we have to do work against the electric field generated by Q1 and Q2. 

 
Hence, W3 = Q3 V31 + Q3 V32 = Q3 ( V31 + V32 ) 

 

where   V31 and V32 are electrostatic potential at point r3 due to Q1 and Q2 respectively. 

 
 

The work done is simply the sum of the work done against the electric field generated by 

point charge Q1 and Q2 taken in isolation: 

 
 

 

- Thus the total work done in assembling the three charges is given as: 

WE = W1 + W2 + W3 

0 + Q2 V21 + Q3 ( V31 + V32 ) 

 

 
Also total work done ( WE ) is given as: 

 

 

If the charges were positioned in reverse order, then the total work done in assembling them 

is given as: 

WE = W3 + W2+ W1 

= 0 + Q2V23 + Q3( V12+ V13) 
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Where V23 is the electrostatic potential at point r2 due to Q3 and V12 and V13 are electrostatic 

potential at point r1 due to Q2 and Q3 respectively. 

 

- Adding the above two equations we have, 

 

2WE = Q1 (V12 + V13) + Q2 (V21 + V23) + Q3 (V31 + V32) 

= Q1 V1 + Q2 V2 + Q3 V3 

 

 

Hence 

WE =1 / 2 [Q1V1 + Q2V2 + Q3V3] 

 

 

where V1, V2 and V3 are total potentials at position r1, r2 and r3 respectively. 

 
 

- The result can be generalized for N point charges as: 
 

 

The above equation has three interpretation: This equation represents the potential energy of the 

system.This is the work done in bringing the static charges from infinity and assembling them in 

the required system. This is the kinetic energy which would be released if the system gets 

dissolved i.e. the charges returns back to infinity. 

In place of point charge, if the system has continuous charge distribution ( line, surface or 

volume charge), then the total work done in assembling them is given as: 
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Since ρv = ∇ . D and E = - ∇ V, 
 

Substituting the values in the above equation, work done in assembling a volume charge 

distribution in terms of electric field and flux density is given as: 
 

The above equation tells us that the potential energy of a continuous charge distribution 

is stored in an electric field. 

 

The electrostatic energy density wE is defined as: 
 

 

Properties of Materials and Steady Electric Current: 

Electric field can not only exist in free space and vacuum but also in any material medium. When 

an electric field is applied to the material, the material will modify the electric field either by 

strengthening it or weakening it, depending on what kind of material it is. 

Materials are classified into 3 groups based on conductivity / electrical property: 

 

 Conductors (Metals like Copper, Aluminum, etc.) have high conductivity (σ >> 1). 

 Insulators / Dielectric (Vacuum, Glass, Rubber, etc.) have low conductivity (σ << 1). 

 Semiconductors (Silicon, Germanium, etc.) have intermediate conductivity. 

Conductivity (σ) is a measure of the ability of the material to conduct electricity. It is 
the reciprocal of resistivity (ρ). Units of conductivity are Siemens/meter and mho. 

 
The basic difference between a conductor and an insulator lies in the amount of free electrons 

available for conduction of current. Conductors have a large amount of free electrons where as 

insulators have only a few number ofelectrons for conduction of current. Most of the conductors 

obey ohm‘s law. Such conductors are also called ohmic conductors. 

Due to the movement of free charges, several types of electric current can be caused. 

The different types of electric current are: 
 

 Conduction Current. 

 Convection Current. 

 Displacement Current. 
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Electric current: 

 
Electric current (I) defines the rate at which the net charge passes through a wire of 

cross sectional surface area S. 

Mathematically, 

 
If a net charge ΔQ moves across surface S in some small amount of time Δt, electric current(I) 

is defined as: 

 

 
How fast or how speed the charges will move depends on the nature of the material medium. 

 

Current density: 

 
Current density (J) is defined as current ΔI flowing through surface ΔS. 

 

Imagine surface area ΔS inside a conductor at right angles to the flow of current. As the 

area approaches zero, the current density at a point is defined as: 
 
 

 

The above equation is applicable only when current density (J) is normal to the surface. 

In case if current density(J) is not perpendicular to the surface, consider a small area ds of 

the conductor at an angle θ to the flow of current as shown: 
 

 

 

In this case current flowing through the area is given as: 

dI = J dS cosθ = J . dS and 𝐼 = ∫ 𝐽̅.̅ ̅𝑑̅𝑠̅̅ 
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Where angle θ is the angle between the normal to the area and direction of the current. 

From the above equation it‘s clear that electric current is a scalar quantity. 

CONVECTION CURRENT DENSITY: 

Convection current occurs in insulators or dielectrics such as liquid, vacuum and rarified gas. 

Convection current results from motion of electrons or ions in an insulating medium. Since 

convection current doesn‘t involve conductors, hence it does not satisfy ohm‘s law. Consider a 

filament where there is a flow of charge ρv at a velocity u = uy ay. 
 

 

 

 
- Hence the current is given as: 
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Where uy is the velocity of the moving electron or ion and ρv is the free volume charge density. 
 

- Hence the convection current density in general is given as: 

J = ρv u 
 

Conduction Current Density: 

Conduction current occurs in conductors where there are a large number of free electrons. 

Conduction current occurs due to the drift motion of electrons (charge carriers). Conduction 
current obeys ohm‘s law. 

When an external electric field is applied to a metallic conductor, conduction current 

occurs due to the drift of electrons. 

The charge inside the conductor experiences a force due to the electric field and hence should 

accelerate but due to continuous collision with atomic lattice, their velocity is reduced. The net 

effect is that the electrons moves or drifts with an average velocity called the drift 

velocity (υd) which is proportional to the applied electric field (E). 

 
 

Hence according to Newton‘s law, if an electron with a mass m is moving in an electric 

field E with anaverage drift velocity υd, the the average change in momentum of the free 

electron must be equal to the applied force (F = - e E). 
 

 

 

The drift velocity per unit applied electric field is called the mobility of electrons (μe). 

υd = - μe E 

where μe is defined as: 
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Consider a conducting wire in which charges subjected to an electric field are moving with 

drift velocity υd. 

Say there are Ne free electrons per cubic meter of conductor, then the free volume 

charge density(ρv)within the wire is 

ρv= - e Ne 

The charge ΔQ is given as: 

ΔQ = ρv ΔV = - e Ne ΔS Δl = - e Ne ΔS υd Δt 
 

- The incremental current is thus given as: 
 

 

 

 
The conduction current density is thus defined as: 

 

where σ is the conductivity of the material. 

 
The above equation is known as the Ohm‘s law in point form and is valid at every point 

in space. 

In a semiconductor, current flow is due to the movement of both electrons and 

holes, hence conductivity is given as: 

σ = ( Ne μe + Nh μh )e 
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DIELECTRC CONSTANT: 

It is also known as Relative permittivity. 

If two charges q 1 and q 2 are separated from each other by a small distance r. Then by 

using the coulombs law of forces the equation formed will be 
 

 

In the above equation   is the electrical permittivity or you can say it, Dielectric constant. 

If we repeat the above case with only one change i.e. only change in the separation 

medium between the charges. Here some material medium must be used. Then the 

equation formed will be. 
 

Now after division of above two equations 
 
 

In the above figure 

is the Relative Permittivity. Again one thing to notice is that the dielectric constant is 

represented by the symbol (K) but permittivity by the symbol  
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CONTINUITY EQUATION: 

The continuity equation is derived from two of Maxwell's equations. It states that the 

divergence of the current density is equal to the negative rate of change of the chargedensity, 
 

Derivation 

One of Maxwell's equations, Ampère's law, states that 
 

Taking the divergence of both sides results in 
 

but the divergence of a curl is zero, so that 
 

Another one of Maxwell's equations, Gauss's law, states that 
 

Substitute this into equation (1) to obtain 
 

which is the continuity equation. 
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LAPLACE'S AND POISSON'S EQUATIONS: 

 
A useful approach to the calculation of electric potentials is to relate that potential to the 

charge density which gives rise to it. The electric field is related to the charge density by the 

divergence relationship 
 

and the electric field is related to the electric potential by a gradient relationship 
 

Therefore the potential is related to the charge density by Poisson's equation 
 

In a charge-free region of space, this becomes LaPlace's equation 
 

This mathematical operation, the divergence of the gradient of a function, is called the 

LaPlacian. Expressing the LaPlacian in different coordinate systems to take advantage of the 

symmetry of a charge distribution helps in the solution for the electric potential V. For example, 

if the charge distribution has spherical symmetry, you use the LaPlacian in spherical polar 

coordinates. 

Since the potential is a scalar function, this approach has advantages over trying to calculate the 

electric field directly. Once the potential has been calculated, the electric field can be computed 

by taking the gradient of the potential. 
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Polarization of Dielectric: 

If a material contains polar molecules, they will generally be in random orientations when 

no electric field is applied. An applied electric field will polarize the material by orienting 

the dipole moments of polar molecules. 

 

 
This decreases the effective electric 

field between the plates and will 

increase the capacitance of the parallel 

plate structure. The dielectric must be 

a good electric insulator so as to 

minimize any DC leakage current 

through a capacitor. 

 

 

 

 

 

 
 

The presence of the dielectric decreases the electric field produced by a given charge density. 
 

The factor k by which the effective field is decreased by the polarization of the 

dielectric is called the dielectric constant of the material. 
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Solved problems: 
 

Problem1: 
 

Problem-2 

 
Problem-3 
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(or l ) out of the page 

 

Introduction: 

In previous chapters we have seen that an electrostatic field is produced by static or stationary charges. 

The relationship of the steady magnetic field to its sources is much more complicated. 

The source of steady magnetic field may be a permanent magnet, a direct current or an electric 

field changing with time. In this chapter we shall mainly consider the magnetic field produced by 

a direct current. The magnetic field produced due to time varying electric field will be discussed 

later. 

There are two major laws governing the magneto static fields are: 

 Biot-Savart Law 

 Ampere's Law 

Usually, the magnetic field intensity is represented by the vector  . It is customary to represent the 

direction of the magnetic field intensity (or current) by a small circle with a dot or cross sign 

depending on whether the field (or current) is out of or into the page as shown in Fig. 2.1. 
 

 

 

 

 

 

 

 

 (or l ) into the page 

Fig. Representation of magnetic field (or current) 

 
 

Biot- Savart’s Law: 
 

This law relates the magnetic field intensity dH produced at a point due to a differential 

current element  as shown in Fig. 
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The magnetic field intensity  at P can be writtenas, 

 

 
 

where is the distance of the current element from the point P. 
The value of the constant of proportionality 'K' depends upon a property called permeability of 

the medium around the conductor. Permeability is represented by symbol 'm' and the constant 'K' 

is expressed in terms of 'm' as 
 
 

 
Magnetic field 'B' is a vector and unless we give the direction of 'dB', its description is not 

complete. Its direction is found to be perpendicular to the plane of 'r' and 'dl'. 

 
If we assign the direction of the current 'I' to the length element 'dl', the vector product dl x r has 

magnitude r dl sinq and direction perpendicular to 'r' and 'dl'. 

 
Hence, Biot–Savart law can be stated in vector form to give both the magnitude as well as 

direction of magnetic field due to a current element as 
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Similar to different charge distributions, we can have different current distribution such as 

line current, surface current and volume current. These different types of current densities are 

shown in Fig. 2.3. 

 

 

Line Current Surface Current Volume Current 

 

Fig. 2.3: Different types of current distributions 

By denoting the surface current density as K (in amp/m) and volume current density as J 

(in amp/m2) we can write: 
 

( It may be noted that  ) 

 
Employing Biot -Savart Law, we can now express the magnetic field intensity H. In terms of 

these current distributions as 

 

 

          ............................. for line current............................ 

          ........................ for surfacecurrent .................... 

          ....................... for volume current...................... 
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𝐻̅      Due to infinitely long straight conductor: 
 

We consider a finite length of a conductor carrying a current placed along z-axis as shown in 

the Fig 2.4. We determine the magnetic field at point P due to this current carrying conductor. 
 

Fig. 2.4: Field at a point P due to a finite length current carrying conductor 

With reference to Fig. 2.4, we find that 

 

Applying Biot - Savart's law for the current element   We can write, 

 

 
 

Substituting we can write, 

 

 
 

We find that, for an infinitely long conductor carrying a current I , and   

Therefore 
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Ampere's Circuital Law: 

Ampere's circuital law states that the line integral of the magnetic field  (circulation of H ) 

around a closed path is the net current enclosed by this path. Mathematically, 
 

The total current I enc can be written as, 

 

By applying Stoke's theorem, we can write 
 

 

Which is the Ampere's circuital law in the point form and Maxwell’s equation for magneto static 

fields.  

Applications of Ampere's circuital law: 
 

1. It is used to find  𝐻̅     and 𝐵̅    due to any type of current distribution. 

2. If   𝐻̅      or 𝐵̅   is known then it is also used to find current enclosed by any closed  path. 

 

We illustrate the application of Ampere's Law with some examples. 

 

𝐻̅    Due to infinitely long straight conductor :( using Ampere's circuital law) 

We compute magnetic field due to an infinitely long thin current carrying conductor as 

shown in Fig. 2.5. Using Ampere's Law, we consider the close path to be a circle of 

radius as shown in the Fig. 4.5. 

If we consider a small current element  , is perpendicular to the plane 

containing both and  . Therefore only component of  that will be present is 

,i.e., . 

By applying Ampere's law we can write, 
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Fig. Magnetic field due to an infinite thin current carrying conductor 

  

𝐻̅       Due to infinitely long coaxial conductor :( using Ampere's circuital law) 

We consider the cross section of an infinitely long coaxial conductor, the inner conductor 

carrying a current I and outer conductor carrying current - I as shown in figure 2.6. We 

compute the magnetic field as a function of as follows: 

In the region  
 

In the region  
 

 

Fig. 2.6: Coaxial conductor carrying equal and opposite currents in the region 
 

 

 

 

In the region  
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Magnetic Flux Density: 

In simple matter, the magnetic flux density related to the magnetic field intensity as where

 called the permeability. In particular when we consider the free space 

where H/m is the permeability of the free space. Magnetic flux density is 

measured in terms of Wb/m 
2
 . 

The magnetic flux density through a surface is given by: 

 

 Wb 

 

In the case of electrostatic field, we have seen that if the surface is a closed surface, the net flux passing 

through the surface is equal to the charge enclosed by the surface. In case of magnetic field isolated 

magnetic charge (i. e. pole) does not exist. Magnetic poles always occur in pair (as N-S). For example, 

if we desire to have an isolated magnetic pole by dividing the magnetic bar successively into two, we 

end up with pieces each having north (N) and south (S) pole as shown in Fig. 6 (a). This process could 

be continued until the magnets are of atomic dimensions; still we will have N-S pair occurring 

together. This means that the magnetic poles cannot be isolated. 

 

Fig. 6: (a) Subdivision of a magnet (b) Magnetic field/ flux lines of a straight current carrying conductor 

Maxwell’s 2
nd

 equation for static magnetic fields: 

Similarly if we consider the field/flux lines of a current carrying conductor as shown in Fig. 6 (b), we 

find that these lines are closed lines, that is, if we consider a closed surface, the number of flux lines 

that would leave the surface would be same as the number of flux lines that would enter the surface. 

From our discussions above, it is evident that for magnetic field, 
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......................................in integral form 

which is the Gauss's law for the magnetic field. 

By applying divergence theorem, we can write: 

 
 

Hence, ......................................................................................... in point/differential form 

which is the Gauss's law for the magnetic field in point form. 

 
Magnetic Scalar and Vector Potentials: 

In studying electric field problems, we introduced the concept of electric potential that simplified 

the computation of electric fields for certain types of problems. In the same manner let us relate 

the magnetic field intensity to a scalar magnetic potential and write: 

From Ampere's law , we know that 
 

 
Therefore, 

 
But using vector identity, we find that is valid only where . 

 

Thus the scalar magnetic potential is defined only in the region where . Moreover, Vm in 

general is not a single valued function of position. This point can be illustrated as follows. Let us 

consider the cross section of a coaxial line as shown in fig 7. 

 
In the region , and 

 
 

Fig. 7: Cross Section of a Coaxial Line 
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If Vm is the magnetic potential then, 

 

If we set Vm = 0 at then c=0 and 
 

 

We observe that as we make a complete lap around the current carrying conductor , we reach 

again but Vm this time becomes 

We observe that value of Vm keeps changing as we complete additional laps to pass through the 

same point. We introduced Vm analogous to electostatic potential V. 

But for static electric fields, 

and      

whereas for steady magnetic field wherever but     even if 

along the path of integration. 

We now introduce the vector magnetic potential which can be used in regions where 

current density may be zero or nonzero and the same can be easily extended to time varying 

cases. The use of vector magnetic potential provides elegant ways of solving EM field problems. 

 

Since  and we have the vector identity that for any vector     , , we 

can write . 

Here, the vector field is       called the vector magnetic potential. Its SI unit is Wb/m. 

Thus if can find      of a given current distribution    ,   can be   found   from      through a curl 

operationWe have introduced the vector function and   related    its curl to . A vector 

function is defined fully in terms of its curl as well as divergence. The choice                      of is 

made as follows. 
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By using vector identity, 
 

 

Great deal of simplification can be achieved if we choose . 

 

Putting , we get which is vector poisson equation. 

In Cartesian coordinates, the above equation can be written in terms of the components as 

 
. 

 

 

The form of all the above equation is same as that of 
 

for which the solution is 
 

 

 

In case of time varying fields we shall see that , which is known as Lorentz condition, V being 

the electric potential. Here we are dealing with static magnetic field, so . 

By comparison, we can write the solution for Ax as 
 

Computing similar solutions for other two components of the vector potential, the vector 

potential can be written as 

 

 

This equation enables us to find the vector potential at a given point because of a volume current 

density . 

Similarly for line or surface current density we can write 
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. 

The magnetic flux through a given area S is given by 

 

Substituting 
 

Vector potential thus have the physical significance that its integral around any closed path is 

equal to the magnetic flux passing through that path.  
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Forces due to magnetic fields 
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Faraday's Law: 

Michael Faraday, in 1831 discovered experimentally that a current was induced in a conducting 

loop when the magnetic flux linking the loop changed. In terms of fields, we can say that a time 

varying magnetic field produces an electromotive force (emf) which causes a current in a closed 

circuit. The quantitative relation between the induced emf (the voltage that arises from 

conductors moving in a magnetic field or from changing magnetic fields) and the rate of change 

of flux linkage developed based on experimental observation is known as Faraday's law. 

Any change in the magnetic environment of a coil of wire will cause a voltage (emf) to be 

"induced" in the coil. No matter how the change is produced, the voltage will be generated. 

The change could be produced by changing the magnetic field strength, moving a magnet 

toward or away from the coil, moving the coil into or out of the magnetic field, rotating the coil 

relative to the magnet, etc. 

Faraday's law is a fundamental relationship which comes from Maxwell's equations. It serves as 

a succinct summary of the ways a voltage (or emf) may be generated by a changing magnetic 

environment. The induced emf in a coil is equal to the negative of the rate of change of 

magnetic flux times the number of turns in the coil. It involves the interaction of charge with 

magnetic field. 
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When two current carrying conductors are placed next to each other, we notice that each induces 

a force on the other. Each conductor produces a magnetic field around itself (Biot– Savart law) 

and the second experiences a force that is given by the Lorentz force. 
 
 

 

 
Mathematically, the induced emf can be written as 

 

Emf = Volts 

where is the flux linkage over the closed path. 

 

A non zero may result due to any of the following: 

(a) time changing flux linkage a stationary closed path. 

(b) relative motion between a steady flux a closed path. 

(c) a combination of the above two cases. 

The negative sign in equation (7) was introduced by Lenz in order to comply with the 

polarity of the induced emf. The negative sign implies that the induced emf will cause a current 

flow in the closed loop in such a direction so as to oppose the change in the linking magnetic 

flux which produces it. (It may be noted that as far as the induced emf is concerned, the closed 

path forming a loop does not necessarily have to be conductive). 

If the closed path is in the form of N tightly wound turns of a coil, the change in the 

magnetic flux linking the coil induces an emf in each turn of the coil and total emf is the sum of 

the induced emfs of the individual turns, i.e., 

 
Emf = Volts 

By defining the total flux linkage as 
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The emf can be written as 

 
 

Emf = 

Continuing with equation (3), over a closed contour 'C' we can write 

Emf =  

where   is the induced electric field on the conductor to sustain the current. 

Further, total flux enclosed by the contour 'C ' is given by 

Where S is the surface for which 'C' is the contour. 

From (11) and using (12) in (3) we can write 

 

By applying stokes theorem 
 

Therefore, we can write 
 

which is the Faraday's law in the point form 

 

We have said that non zero can be produced in a several ways. One particular case is when a 

time varying flux linking a stationary closed path induces an emf. The emf induced in a 

stationary closed path by a time varying magnetic field is called a transformer emf .
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MAXWELL’S EQUATIONS (Time varying Fields) 
 

Introduction: 

In our study of static fields so far, we have observed that static electric fields are produced by 

electric charges, static magnetic fields are produced by charges in motion or by steady current. 

Further, static electric field is a conservative field and has no curl, the static magnetic field is 

continuous and its divergence is zero. The fundamental relationships for static electric fields 

among the field quantities can be summarized as: 

(1) 

 
(2) 

For a linear and isotropic medium, 
 

(3) 

Similarly for the magnetostatic case 
 

(4) 
 

(5) 
 

(6) 

It can be seen that for static case, the electric field vectors and and magnetic field 

vectors and form separate pairs. 

In this chapter we will consider the time varying scenario. In the time varying case we 

will observe that a changing magnetic field will produce a changing electric field and vice versa. 

We begin our discussion with Faraday's Law of electromagnetic induction and then 

present the Maxwell's equations which form the foundation for the electromagnetic theory. 

Maxwell's equations represent one of the most elegant and concise ways to state the 

fundamentals of electricity and magnetism. From them one can develop most of the working 

relationships in the field. Because of their concise statement, they embody a high level of 

mathematical sophistication and are therefore not generally introduced in an introductory 

treatment of the subject, except perhaps as summary relationships. 

These basic equations of electricity and magnetism can be used as a starting point for advanced 

courses, but are usually first encountered as unifying equations after the study of electrical and 

magnetic phenomena. 
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Symbols Used 

E = Electric field ρ = charge 

density 

i = electric 

current 

B = Magnetic field ε0 = permittivity J = current 

density 

D = Electric 

displacement 

μ0 = permeability c = speed of 

light 

 

H = Magnetic field 
strength 

 

M = Magnetization P = 
Polarization 

 

Integral form in the absence of magnetic or polarizable media: 

 
 

I. Gauss' law for electricity 

 

 

 

 

Gauss' law for magnetism 

 

 

 

 
 

III. Faraday's law of induction 

 

 
IV. Ampere's law 

 

 

 

 

Differential form in the absence of magnetic or polarizable media: 

 

 
I. Gauss' law for electricity 
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Gauss' law for magnetism 

 

III. Faraday's law of induction 

 

 

 

 

 
IV. Ampere's law 

 

 

 

 

 

Differential form with magnetic and/or polarizable media: 

 

 
I. Gauss' law for electricity 

 

 
 

 

III. Faraday's law of induction 

 

 

IV. Ampere's law 
 

 
 

II. Gauss' law for magnetism 
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Inconsistency of amperes law: 
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Solved problems: 
 

Problem1: 
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 Problem2 
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Problem3: 

 

Problem4: 
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Problem5: 
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Problem6 
 

 

: 
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Problem7: 
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Problem8 
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UNIT – IV 

EM WAVE CHARACTERISTICS-I 
 

 Wave Equations for Conducting and Perfect Dielectric Media 

 Uniform Plane Waves - Definition, Relation between E & H 

 Wave Propagation in Lossless and Conducting Media 

 Wave Propagation in Good Conductors and Good Dielectrics 

 Illustrative Problems. 

معادلات ماكسويل هي مجموعة من المعادلات التفاضلية الجزئية المقترنة التي تشكل، إلى جانب قانون قوة لورنتس، أساس الكهرومغناطيسية التقليدية والبصريات التقليدية والدوائر الكهربائية. توفر المعادلات نموذجًا رياضيًا للتكنولوجيات الكهربائية والبصرية وتكنولوجيا الراديو، مثل توليد القدرة الكهربائية والمحركات الكهربائية والاتصالات اللاسلكية والعدسات والرادار وما إلى ذلك. تصف معادلات ماكسويل آلية توليد الحقول الكهربائية والمغناطيسية بواسطة الشحنات والتيارات والتغييرات في الحقول. إحدى النتائج المهمة للمعادلات هي إثبات أن الحقول الكهربائية والمغناطيسية المتذبذبة تنتشر بسرعة ثابتة (سرعة الضوء c) في الفراغ. يمكن لهذه الموجات المعروفة باسم الإشعاع الكهرومغناطيسي امتلاك أطوال موجية مختلفة لإنتاج طيف كهرومغناطيسي يتراوح بين الموجات الراديوية إلى أشعة غاما. سميت المعادلات نسبةً لعالم الفيزياء والرياضيات جيمس كليرك ماكسويل، الذي نشر شكلًا مبكرًا من المعادلات التي تضمنت قانون قوة لورنتس بين عامي 1861 و1862. استخدم ماكسويل المعادلات أولًا لاقتراح أن الضوء هو ظاهرة كهرومغناطيسية.

تمتلك المعادلات شكلين رئيسيين. تتمتع معادلات ماكسويل المجهرية بقابلية شاملة للتطبيق ولكنها غير عملية للحسابات العادية. تربط هذا المعادلات الحقلين الكهربائي والمغناطيسي بالشحنة والتيار الكليين، بما في ذلك الشحنات والتيارات المعقدة في المواد على المقياس الذري. تُعرّف معادلات ماكسويل الجاهرية حقلين إضافيين جديدين يصفان سلوك المادة على نطاق كبير دون الحاجة للأخذ بعين الاعتبار شحنات المقياس الذري والظواهر الكمومية مثل اللف المغزلي. ومع ذلك، يتطلب استخدامها معاملات محددة تجريبيًا لوصف ظواهر استجابة المواد للمؤثرات الكهرومغناطيسية.

غالبًا ما يُستخدم مصطلح معادلات ماكسويل في صياغات بديلة مماثلة. من المُفضل استخدام أشكال معادلات ماكسويل المرتكزة على الكمون الكهربائي والكمون المغناطيسي في حل المعادلات بشكل صريح باعتبارها «مسألة قيمة حدية» أو «ميكانيكا تحليلية» أو للاستخدام في ميكانيكا الكم. تؤدي «صياغة موافق التغير» (في الزمكان بدلًا من المكان والزمان بشكل منفصل) إلى ظهور التوافق بين معادلات ماكسويل والنسبية الخاصة. تتوافق «معادلات ماكسويل في الزمكان المنحني»، والتي تُستخدم عادة في فيزياء الطاقة العالية وفيزياء الجاذبية، مع النسبية العامة. في الواقع، طور آينشتاين النسبية الخاصة والعامة للجمع بين سرعة الضوء الثابتة، التي تُعد إحدى نتائج معادلات ماكسويل، ومبدأ أن الحركة النسبية لها أهمية فيزيائية فقط.

مثّل نشر المعادلات توحيد الظواهر الموصوفة سابقًا: المغناطيسية والكهرباء والضوء والإشعاع المصاحب له. منذ منتصف القرن العشرين، يعلم العلماء أن معادلات ماكسويل ليست دقيقة تمامًا، بل تمثل الحد التقليدي لنظرية الكهروديناميكا الكمية الأساسية.
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from 1 

 

 
 

) medium (eq3) 

 

Wave equations: 

The Maxwell's equations in the differential form are 

Let   us consider   a source free uniform medium having dielectric constant , magnetic 

permeability and conductivity . The above set of equations can be written as 

 

Using the vector identity , 

We can write from 2 

 

 

 
Substituting 

 

 

 
But in source free( 

In the same manner for equation eqn 1 

 

Since from eqn 4, we can write 
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These two equations 

are known as wave equations. 

 

 
Uniform plane waves: 

A uniform plane wave is a particular solution of Maxwell's equation assuming electric 

field (and magnetic field) has same magnitude and phase in infinite planes perpendicular to the 

direction of propagation. It may be noted that in the strict sense a uniform plane wave doesn't 

exist in practice as creation of such waves are possible with sources of infinite extent. However, 

at large distances from the source, the wave front or the surface of the constant phase becomes 

almost spherical and a small portion of this large sphere can be considered to plane. The 

characteristics of plane waves are simple and useful for studying many practical scenarios 

Let us consider a plane wave which has only Ex component and propagating along z . 

Since the plane wave will have no variation along the plane perpendicular to z 

 
 

i.e., xy plane, . The Helmholtz's equation reduces to, 

 

The solution to this equation can be written as 
 

are the amplitude constants (can be determined from boundary conditions). 
 

In the time domain, 
 

 

assuming are real constants. 
 

Here, represents the forward traveling wave. The plot of 
for several values of t is shown in the Figure below 
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Figure : Plane wave traveling in the + z direction 

As can be seen from the figure, at successive times, the wave travels in the +z direction. 

If we fix our attention on a particular point or phase on the wave (as shown by the dot) i.e. , 

= constant 

Then we see that as t is increased to , z also should increase to so that 

Or, 

Or, 

When , 

 

we write = phase velocity . 

 

If the medium in which the wave is propagating is free space i.e., 

Then  

Where 'C' is the speed of light. That is plane EM wave travels in free space with the speed of 

light. 

The wavelength is defined as the distance between two successive maxima (or minima or 
any other reference points). 

i.e.,  

or, 

or,  
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Substituting , 
 

or, 

Thus wavelength also represents the distance covered in one oscillation of the wave. 

Similarly,  represents a plane wave traveling in the -z direction. 

The associated magnetic field can be found as follows: 

From (6.4), 
 

 

 
 

 

= 

 
 

= 

where  is the intrinsic impedance of the medium. 

When the wave travels in free space 

 

 

is the intrinsic impedance of the free space. 

In the time domain, 
 

Which represents the magnetic field of the wave traveling in the +z direction. 

For the negative traveling wave, 

 

For the plane waves described, both the E & H fields are perpendicular to the direction of 

propagation, and these waves are called TEM (transverse electromagnetic) waves. 

The E & H field components of a TEM wave is shown in Fig below 
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1 

∘ 

∘ 

∘ ∘ 

 

 

 
 

 

Figure : E & H fields of a particular plane wave at time t. 

 

 

Solved Problems: 

 
1. The vector amplitude of an electric field associated with a plane wave that propagates in 

the negative z direction in free space is given by  ‸ m  2 ax   3ay 
V 

m
 

Find the magnetic field strength. 
 

Solution: 
The direction of propagation nβ is –az. The vector amplitude of the magnetic field is then given 

n   ‸ ax ay  az 
   1 



by ‸ m   
 

 0   0   1  
 377 

3 ax  2 ay  
A

m 

2 3 0 
 

*note  


120π~377Ω (Appendix D – Table D.1) 
 
 

2. The phasor electric field expression in a phase is given by 

‸  ax  ‸ y  a y  2 

Find the following: 
 

1. ‸ y . 

j5 az e j2.3(0.6x 0.8 y) 

2. Vector magnetic field, assuming   ∘ and  ∘ . 

3. Frequency and wavelength of this wave. 
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Solution: 

 

1. The general expression for a uniform plane wave propagating in an arbitrary 
direction is given by 

 

‸  ‸ m e
 j r 

where the amplitude vector ‸ m , in general, has components in the x, y, and z 

directions. Comparing equation 6.3 with the general field equation for the plane 
wave propagating in an arbitrary direction, we obtain 

 

β · r = βxx + βyy + βzz 
= β (cos θxx + cos θyy + cos θzz) 
= 2.3(-0.6x + 0.8y + 0) 

 
Hence, a unit vector in the direction of propagation nβ is given by 

nβ = -0.6ax + 0.8ay. 

Because the electric field  ‸ must be perpendicular to the direction of propagation nβ, it must 

satisfy the following relations: 
 

nβ ·  ‸  = 0 

Therefore, (-0.6ax + 0.8ay) · ax  ‸ y ay  2   j5 az  0 

Or 

-0.6 + 0.8 ‸ y = 0 

Hence,  ‸ y   = 0.75.  The electric field is given by 

‸  a x  ‸ y  a y  2  j5 az e j2.3(0.6x 0.8 y) 

 



2. The vector magnetic field  is givenby 
 

1 ‸ 1   
 

 

ax ay az 

‸  
  

n   
   

377
  0.6 0.8 0 

1 0.75 2  j5 

 

so that 
 
 

‸ x   
0.8(2   j5) 

 4.24   j10.6103 

377 
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y 

 

‸  
0.6(2   j5) 

 3.18 


377 
j7.95103

 

 

‸ z
  

0.60.75  0.8 
 3.31103

 

377 
 

 

The vector magnetic field is then given by 

‸  ‸ x  ax  ‸ y  ay  ‸ z  az e j2.3(0.6x0.8y) 

3. The wavelength λ is given by 

  
2 

 
2 

 2.73 m 

 2.3 

 
and the frequency 

 

f 
 c 


3108 

   0.11GHz 

 2.73 
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