# محاضرات جبر الزمر

المرحلة الثانية

اعداد

م.م. هديل حازم سامي

**Definition:** Let S be a nonempty set, a binary operation \* is a function from the Cartesian product  $S \times S$  into S.

 $S \neq \emptyset$  and  $*: S \times S \rightarrow S$  is a function s.t.\* (a, b) = a \* **Mathematically**: Let b,  $\forall a, b \in S$ .

**Example1**: Let  $+: N \times N \to N$  is a function that is a binary operation on N since  $\forall a, b \in \mathbb{N}: + (a, b) = a + b \in \mathbb{N}$ .

**Example2**: .:  $R \times R \rightarrow R$  is a binary operation on R.

**Example3**:  $\div$ : Z × Z  $\rightarrow$  Z is not binary operation since  $\forall a, b \in Z$ :  $\div$  (a, b) = a  $\div$ b ∉ Z.

**Definition**: a mathematical system (mathematical structure), is a nonempty set of elements with one or more binary operations defined on this set.

**Example**: (N,+,.) is a math. sys.,  $(R,,,\div)$  is a math. sys.  $(Z,,,\div)$  is not math. sys.,

**Question1:** let  $S=\{1,-1,i,-i\}$  s.t.  $i^2=-1$ . Is (S,.) construct a math. system where (.) is an ordinary multiplication?

Question2: If Z<sub>e</sub> and Z<sub>O</sub> denote the even and odd integers respectively, are  $(Z_e,+,.)$  & $(Z_o,+,.)$  constitute mathematical system?

**<u>Definition</u>**: The operation \* defined on the set S is said to be associative if,  $(a * b) * c = a * (b * c) : a,b,c \in S.$ 

**Example**1: + is an associative operation on N,Z,Q and R. also (.). but (-) is not asso. operation on R.

**Example**2: Let \* be an operation defined on Z s.t. a \* b = a + b + ab :a, b  $\in$  Z. Show whether that \* is an associative operation on Z.

Sol. Let  $a, b, c \in Z$ 

$$(a*b)*c = a*(b*c)$$

L.S. 
$$(a * b) * c = (a + b + ab) * c$$
  
=  $(a + b + ab) + c + (a + b + ab)c$   
=  $a + b + ab + c + ac + bc + abc$ 

R.S. 
$$a * (b * c) = a * (b + c + bc)$$

$$= a + (b + c + bc) + a(b + c + bc)$$
$$= a + b + c + bc + ab + ac + abc$$
$$\therefore L.S = R.S.$$

∴ \* is an ass. operation on Z

**<u>Definition</u>**: A semi group is a pair (S,\*) consisting of a nonempty sets together with an associative binary operation \* defined on S.

**Example**: Let Q be the rational numbers, define  $a * b = \frac{1}{2}(a + b)$ : a, b  $\in$  Q.

prove if (Q,\*) is a semi group or not?

Solution: 
$$a * b = \frac{1}{2}(a + b)$$
:  $a, b \in Q$  then  $a * b \in Q$ 

∴\* is closed

let a, b,  $c \in Q$ 

$$a * (b * c) = (a * b) * c$$

L.S./ 
$$a * (b * c) = a * \left[\frac{1}{2}(b + c)\right]$$

$$= \frac{1}{2} \left[ a + \left[ \frac{1}{2} (b + c) \right] = \frac{1}{2} a + \frac{1}{4} b + \frac{1}{4} c$$

R.S./ (a \* b) \* c = 
$$\frac{1}{2}$$
(a + b) \* c =  $\frac{1}{2}$  $\left[\frac{1}{2}$ (a + b) + c $\right]$   
=  $\frac{1}{4}$ a +  $\frac{1}{4}$ b +  $\frac{1}{2}$ c

 $\therefore$  L. S.  $\neq$  R. S.

Then (Q,\*) is not semi group.

**<u>Definition</u>**: The system (S,\*) is said to have a (two- sides) identity element for the operation \* if there exists an element e in S such that:

$$a * e = e * a = a$$
 for every  $a \in S$ 

**Example**: (0) is the identity element for the systems (Z,+),(Q,+),(R,+) and (1) for (N,.),(Z,.),(Q,.),(R,.).

(Z<sub>e</sub>,.) has not identity element

**Example**2: Let  $S = \{a + b\sqrt{2} : a, b \in A\}$ 

Z{is the system (S,.) has an identity element?

Sol. 
$$\forall$$
 a + b $\sqrt{2}$   $\in$  S  $\exists$   $e_1 + e_2\sqrt{2}$   $\in$  S , s.t.

$$(a + b\sqrt{2})(e_1 + e_2\sqrt{2}) = (e_1 + e_2\sqrt{2})(a + b\sqrt{2}) = (a + b\sqrt{2})$$

L.S. 
$$/(a + b\sqrt{2})(e_1 + e_2\sqrt{2}) = a + b\sqrt{2}$$

$$ae_1 + 2be_2 + (ae_2 + be_1)\sqrt{2} = a + b\sqrt{2}$$

$$ae_1 + 2be_2 = a \dots (1) \rightarrow e_1 = \frac{a - 2be_2}{a} \dots (3)$$

$$ae_2 + be_1 = b \dots (2)$$

Substitute 3 in 2 we get

$$ae_2 + \frac{ba - 2b^2e_2}{a} = b$$

$$a^2e_2 + ba - 2b^2e_2 - ba = 0$$

$$(a^2 - 2 b^2)e_2 = 0$$

$$\rightarrow e_2 = 0$$

$$\rightarrow e_1 = 0$$

R.S./ Similar

H.W. Is  $(Z^+,...)$  has identity?

**<u>Definition:</u>** Let (S,\*) be a mathematical system with identity element e. An element  $a \in S$  is said to have a (two – sides) inverse under the operation \* if there exists some number  $a^{-1} \in S$  such that:

$$a * a^{-1} = a^{-1} * a = e$$

In particular, since e\*e=e we may infer that  $e^{-1} = e$ .

**Example**: Consider the set  $G=\{1,2,3\}$ , and \* is a function defined by the operation table. Find the inverse for each element?

| * | 1 | 2 | 3 |
|---|---|---|---|
| 1 | 1 | 2 | 3 |
| 2 | 2 | 3 | 1 |
| 3 | 3 | 1 | 2 |

**Definition**: A group is a pair (G,\*) consisting of a nonempty set G and a binary operation \* defined on G, satisfying the following conditions:

- 1) G is closed under the operation \*.
- 2) The operation \* is associative.
- 3) G contains an identity element e for the operation \*.
- 4) Each element a of G has an inverse  $a^{-1} \in G$  relative to \*.

**<u>Definition</u>**: The pair (G,\*) is a group if and only if (G,\*) is a semi group with identity in which element of G has an inverse.

**Example**1: (Z,+), (Q,+), (R,+),  $(Q-\{0\},.)$ ,  $(R-\{0\},.)$  are all groups.

**Example2**:  $G=R/\{1\}$ ,  $a^*b=a+b-ab$ , show that (G, \*) is a group.

Sol.: 1) Since  $a + b - ab \in G \text{ then } a * b \in G \rightarrow$ (G,\*)is a mathematical system.

2) let a, b, 
$$c \in G \to (a * b) * c = a * (b * c)$$

L.S./ 
$$(a * b) * c = (a + b - ab) * c = (a + b - ab) + c - (a + b - ab)c$$
  
=  $a + b - ab + c - ac - bc + abc$ 

R.S./ 
$$a * (b * c) = a * (b + c - bc) = a + (b + c - bc) - a(b + c - bc)$$
  
=  $a + b + c - bc - ab - ac + abc$ 

 $\therefore$  \* is an associative operation on G.

L. S. ) 
$$a * e = a \rightarrow a + e - ae = a$$
 (by cancellation law

$$\rightarrow (1-a)e = 0 \rightarrow e = 0 \in G$$

R. S. ) 
$$e * a = a \rightarrow e + a - ea = a$$
 (by cancellation law

$$\rightarrow$$
 e(1 – a) = 0  $\rightarrow$  e = 0  $\in$  G

: (G,\*) has an identity element e=0.

4) 
$$a * a^{-1} = a^{-1} * a = e$$

L. S. ) 
$$a * a^{-1} = e \rightarrow a * a^{-1} = 0 \rightarrow a + a^{-1} - aa^{-1} = 0$$

$$\rightarrow (1-a)a^{-1} = -a$$

$$\rightarrow a^{-1} = \frac{-a}{1-a}$$

R. S.) 
$$a^{-1} * a = e \rightarrow a^{-1} * a = 0 \rightarrow a^{-1} + a - a^{-1}a = 0$$

$$\rightarrow a^{-1}(1-a) = -a$$

$$\rightarrow a^{-1} = \frac{-a}{1-a} \in G$$

 $\therefore$  (G,\*) is a group

**Example 2**: let  $G = \{(x, y): x, y \in R\}$  and \* defined on G as:

$$\forall (x,y), (a,b) \in G \text{ then } (x,y) * (a,b) = (x+a,y+b)$$

Show that (G,\*) is a group.

Sol: 1) 
$$R \neq \emptyset \rightarrow G \neq \emptyset$$

Let (x, y),  $(a, b) \in G$  such that  $a, b, x, y \in R$ 

$$\rightarrow (x,y)*(a,b) = (x+a,y+b) \in G$$

Since  $x + a, y + b \in R$ 

∴ G is a closed under \*.

2) let 
$$(x,y), (a,b), (c,d) \in G, x, y, a, b, c, d \in R$$

L. S.) 
$$[(x,y)*(a,b)]*(c,d) = (x + a, y + b)*(c,d) = (x + (a + c), y + (b + d))$$

$$= (x + (a + c), y + (b + d)) = (x,y) * (a + c, b + d)$$

$$= (x,y) * [(a,b) * (c,d)] = R. S$$

 $\therefore$  \* is associative on G.

3) Let 
$$(x,y) \in G$$
,  $x,y \in R$  s.t.

$$(x,y) * (e_1,e_2) = (x,y) \rightarrow (x + e_1,y + e_2) = (x,y)$$

$$→ x + e_1 = x , y + e_2 = y$$

$$→ e_1 = x - x , e_2 = y - y$$

$$→ e_1 = 0, e_2 = 0$$

$$→ (e_1, e_2) = (0,0) ∈ G$$

Similarly  $(e_1, e_2) * (x, y) = (x, y)$ 

 $(e_1, e_2) = (0,0) \in G$  is an identity element.

4)let  $(a,b) \in G$ ,  $a,b \in R$  and

$$(a,b) * (c,d) = (e_1, e_2)$$
  
 $\rightarrow (a,b) * (c,d) = (0,0)$   
 $\rightarrow (a+c,b+d) = (0,0)$   
 $\rightarrow a+c=0$ ,  $b+d=0$   
 $\rightarrow c=-a$ ,  $d=-b$   
 $\rightarrow (c,d) = (-a,-b)$ 

 $\therefore$  (-a, -b) is the inverse element of (a,b).

Then (G,\*) is a group.

**Definition**: If A is an arbitrary set, then the set whose elements are all the subsets of A is known as the power set of A and denoted by P(A):

$$P(A) = \{B: B \subseteq A\}, P(A) = 2^{n}.$$

**Note**: 1) If 
$$A = \emptyset \rightarrow P(A) = \{\emptyset\}$$

2) If 
$$x \in A \rightarrow \{x\} \subseteq A \rightarrow \{x\} \in P(A)$$
.

- 3) Since  $\emptyset \subseteq A$  and  $A \subseteq A$  we always have  $\{\emptyset, A\} \subseteq P(A)$ .
- 4) If A is a finite set with (n) elements then P(A) is itself a finite set having 2<sup>n</sup> elements.

Example: Suppose the set 
$$A=\{1,2,3\}$$
, then  $P(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$ .

**Example**: Suppose the set  $A=\{a,b\}$  and  $\Delta$  is a symmetric difference operation defined on A. Is  $(P(A),\Delta)$  constitute a group?

| $\Delta$ Ø $\{a\}$ $\{b\}$ | } {a,b} |
|----------------------------|---------|
|----------------------------|---------|

| Ø     | Ø     | {a}   | {b}   | {a,b} |
|-------|-------|-------|-------|-------|
| {a}   | {a}   | Ø     | {a,b} | {b}   |
| {b}   | {b}   | {a,b} | Ø     | {a}   |
| {a,b} | {a,b} | {b}   | {a}   | Ø     |

H.w.

- 1) prove if (P(A), U) is a group or not?
- 2) suppose that  $a \in R \{0,1\}$  and consider the set  $G = \{a^k : k \in Z\}$ . Is (G,.) constitute a group.

<u>Theorem1</u>: Let (G,\*) be a group ,  $a \in G$  and  $m, n \in Z$ . the powers of a obey the following laws of exponents:

1) 
$$a^n * a^m = a^{n+m} = a^m * a^n$$

2) 
$$(a^n)^m = a^{nm} = (a^m)^n$$

3) 
$$a^{-n} = (a^n)^{-1}$$

4) 
$$e^{n} = e$$

**<u>Definition</u>**: the operation \* defined on the set S is called commutative if a\*b=b\*a for every pair of elements  $a, b \in S$ .

**Example1**: Let S=Z, a\*b=a+b-1

**Solution**: let a, b  $\in$  Z S.T:

∴\* is a commutative.

**Example2**: Let S=R/ $\{0\}$ ,  $a*b = \frac{a}{b}$  then \* is not comm. operation.

**<u>Definition</u>**: Let (G,\*) be a group, if \* is a commutative operation on G then (G,\*) is called a commutative group.

**Example**: (Z,+), (R,+), (Q,+),  $(Q/\{0\},.)$ ,  $(R/\{0\},.)$  are comm. group.

**Example 2**: Take the set G as consisting of the six function  $f_1, f_2, \dots f_6$ , where for all  $x \in R - \{0,1\}$  we define  $f_1(x) = x$ ,  $f_2(x) = \frac{1}{x}$ ,  $f_3(x) = 1 - x$ ,  $f_4(x) = \frac{x-1}{x}$ ,  $f_5(x) = \frac{x}{x-1}$ ,  $f_6(x) = \frac{1}{1-x}$ 

Is  $(G_{,0})$  be a commutative group.?

## **Solution**:

| 0 | $f_1$ | f <sub>2</sub> | $f_3$ | f <sub>4</sub> | $f_5$ | $f_6$ |
|---|-------|----------------|-------|----------------|-------|-------|
|   | _     | _              | _     | _              |       | _     |

| f <sub>1</sub> | f <sub>1</sub> | f <sub>2</sub> | f <sub>3</sub> | f <sub>4</sub> | f <sub>5</sub> | f <sub>6</sub> |
|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| f <sub>2</sub> | f <sub>2</sub> | f <sub>1</sub> | f <sub>6</sub> | f <sub>5</sub> | f <sub>4</sub> | f <sub>3</sub> |
| f <sub>3</sub> | f <sub>3</sub> | f <sub>4</sub> | f <sub>1</sub> | f <sub>2</sub> | f <sub>6</sub> | f <sub>5</sub> |
| f <sub>4</sub> | f <sub>4</sub> | $f_3$          | f <sub>5</sub> | f <sub>6</sub> | f <sub>2</sub> | f <sub>1</sub> |
| f <sub>5</sub> | f <sub>5</sub> | $f_6$          | f <sub>4</sub> | $f_3$          | $f_1$          | f <sub>2</sub> |
| f <sub>6</sub> | f <sub>6</sub> | f <sub>5</sub> | f <sub>2</sub> | $f_1$          | $f_3$          | f <sub>4</sub> |

#### From the table:

- 1) (G<sub>0</sub>) is a math. sys.
- 2) o is as associative operation on G.
- 3)  $e = f_1$

4) 
$$(f_1)^{-1} = f_1, (f_2)^{-1} = f_2, (f_3)^{-1} = f_3, (f_4)^{-1} = f_6, (f_5)^{-1} = f_5, (f_6)^{-1} = f_4.$$

∴ (G, ₀)is a group.

5) L.S) 
$$(f_{2 o} f_{3})(x) = f_{2}[f_{3}(x)]$$
  
=  $f_{2}[1 - x] = \frac{1}{1 - x} = f_{6}(x)$ 

R. S) 
$$(f_3 \circ f_2)(x) = f_3[f_2(x)]$$
  
=  $f_3(\frac{1}{x}) = 1 - \frac{1}{x} = \frac{x-1}{x} = f_4(x)$ 

$$: L.S \neq R.S$$

$$\therefore (f_{2 o} f_3) \neq (f_{3 o} f_2)$$

- $\therefore$  o is not comm. operation on G.
- $\therefore$  the group  $(G_{,0})$  is not commutative.

**H.W**). Let  $M = \{ \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ , a, b, c,  $d \in R \}$  and \* define on M as:

$$\forall \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \begin{bmatrix} x & y \\ z & w \end{bmatrix} \in M \text{ then }$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} * \begin{bmatrix} x & y \\ z & w \end{bmatrix} = \begin{bmatrix} a+x & b+y \\ c+z & d+w \end{bmatrix} \text{ show that } (M,^*) \text{ is a commutative group?}$$

**Theorem2**: The identity element of a group (G,\*) is unique, and each element of a group has inverse element.

**<u>Proof</u>**: Let (G, \*) be a group has two identity element  $e_1$  and  $e_2$  then  $\forall a \in G$ :

$$a * e_1 = e_1 * a = a \dots (1)$$

and

$$a * e_2 = e_2 * a = a \dots (2)$$

Equality (1) and (2) we have

$$a * e_1 = a * e_2 \rightarrow e_1 = e_2$$

So, the identity element of a group (G,\*) is unique.

To show that an element of a group (G,\*) has exactly one inverse, we assume that  $a \in G$  such that a has two inverse element  $a_1^{-1}$  and  $a_2^{-1}$  then

$$a * a_1^{-1} = a_1^{-1} * a = e \dots (3)$$

$$a * a_2^{-1} = a_2^{-1} * a = e \dots (4)$$

Equality (3) and (4) we have

$$a * a_1^{-1} = a * a_2^{-1} \dots (5)$$

Multiply both sides of (5) from the left by  $a_1^{-1}$  or  $a_2^{-1}$  we have

$$(a_1^{-1} * a) * a_1^{-1} = (a_1^{-1} * a) * a_2^{-1}$$

$$\rightarrow e * a_1^{-1} = e * a_2^{-1}$$

$$\rightarrow a_1^{-1} = a_2^{-1}$$

∴ each element of a group (G,\*) has exactly one inverse element.

**Corollary:** If (G, \*) is a group then  $(a^{-1})^{-1} = a \ \forall \ a \in G$ .

**Proof**: Let  $a \in G$ , since (G, \*) is a group then  $\exists a^{-1} \in G$  s. t.

$$a * a^{-1} = a^{-1} * a = e \dots (1)$$

Now, since  $a^{-1} \in G$ , then  $\exists (a^{-1})^{-1} \in G$  s. t.

$$a^{-1} * (a^{-1})^{-1} = (a^{-1})^{-1} * a^{-1} = e \dots (2)$$

From (1) and (2) we have

$$a * a^{-1} = a^{-1} * (a^{-1})^{-1}$$

 $\rightarrow a^{-1}$  has two inverse elements a and  $(a^{-1})^{-1}$ 

But from (theorem 2) each element of a group (G,\*) has exactly one inverse element.

$$\therefore (a^{-1})^{-1} = a .$$

**Example**: let G={1,-1,i,-i} s.t.  $i^2$ =-1 and (.) is a binary operation on G. find  $i^{-1}$ ,  $(-1)^{-1}$ ,  $(i^{-1})^{-1}$ ,  $(-i^{-1})^{-1}$ 

**Lemma**: If a, b, c,  $d \in G$  and (G,\*) is a semi group then (a\*b)\*(c\*d)=a\*((b\*c)\*d)

**Proof**: L.S.) (a\*b)\*(c\*d)

Let m=c\*d

$$\Rightarrow$$
(a\*b)\*(c\*d)= (a\*b)\*m =a\*(b\*m) [since \* associative]

$$= a*((b*(c*d))= a*((b*c)*d).$$

R.S.) 
$$a*((b*c)*d) = a*((b*(c*d)) [since * associative]$$

Let m=c\*d

$$\Rightarrow$$
 a\*(b\*m) = (a\*b)\*m [since \* associative]

$$= (a*b)*(c*d)$$

∴ 
$$(a*b)*(c*d)=a*((b*c)*d$$
)

**Theorem3**: If (G, \*) is a group, then  $(a * b)^{-1} = b^{-1} * a^{-1} \forall a, b \in G$ .

Proof: 
$$\Rightarrow$$
 clearly  $(a * b) * (a * b)^{-1} = (a * b)^{-1} * (a * b) = e$ 

$$(a * b) * (b^{-1} * a^{-1}) = ((a * b) * b^{-1}) * a^{-1} [from the lemma]$$

$$= (a * (b * b^{-1})) * a^{-1} = (a * e) * a^{-1} = a * a^{-1} = e$$

$$\therefore$$
  $(a * b)^{-1} = b^{-1} * a^{-1}$ 

**Corollary**: If (G,\*) is a commutative group, then  $(a*b)^{-1} = a^{-1}*b^{-1} \ \forall \ a,b \in$ 

**<u>Proof</u>**: Since (G,\*) is a group then  $(a*b)^{-1} = b^{-1} * a^{-1}$  [by th.3]

But 
$$b^{-1} * a^{-1} = a^{-1} * b^{-1}$$
 [\* comm. operation]

$$(a * b)^{-1} = a^{-1} * b^{-1}$$

H.W. Let G denotes the set of all ordered pairs of real numbers. If the binary operation \* is defined on the set G by the rule

(a,b)\*(c,d) = (ac,bc+d) then show that (G,\*) is not commutative group? And find

$$((1,3)*(2,4))^{-1}$$
,  $(2,4)^{-1}*(1,3)^{-1}$ 

**Theorem4**: (Cancellation law)

If a,b and c are elements of a group (G,\*) such that either a\*c=b\*c or c\*a=c\*b then a=b.

**Proof**: since  $c \in G$  and (G,\*) is a group then  $c^{-1} \in G$  exists

Multiplying the equation a\*c=b\*c both of sides from the right by  $c^{-1}$  we obtain

$$(a*c)*c^{-1} = (b*c)*c^{-1}$$

Then by associative law this becomes  $a^*(c^*c^{-1}) = b^*(c^*c^{-1})$ 

$$\Rightarrow$$
 a \* e=b\*e

$$\Rightarrow$$
 a=b

Similarly we can show that c\*a=c\*b implies a=b.

**Theorem5**: In a group (G,\*) the equation a\*x=b and y\*a=b have a unique solution.

**Proof**: Let  $x = a^{-1} * b$ 

$$\therefore a * (a^{-1} * b) = b$$

$$\Rightarrow$$
  $(a*a^{-1})*b = b \Rightarrow e*b = b \Rightarrow b=b$ 

To show the solution is unique, let  $x' \in G$  such that a \* x' = b

$$\Rightarrow a * x' = a * x$$
 [ by cancellation law]

$$\Rightarrow x' = x$$

**Corollary:** In a multiplication table for a group, each element appears exactly once in each row and column.

Proof: let  $a, b \in G$  and let  $x_1 \neq x_2 \in G$  s. t.

$$a * x_1 = b$$

$$a * x_2 = b$$

$$\therefore a * x_1 = a * x_2$$

By theorem (5) we get  $x_1 = x_2$ .

#### **Problems**

1) Given a,b are element of a group (G,\*) with a\*b=b\*a show that  $(a*b)^k=b*a$  $a^k * b^k$  for  $k \in \mathbb{Z}$ .

Proof:  
If k=1  

$$\Rightarrow (a * b)^1 = a * b$$
  
If k=2  
 $\Rightarrow (a * b)^2 = (a * b) * (a * b)$   
 $= a * a * b * b$  (since  $a * b = b * a$ )  
 $= a^2 * b^2$ 

Let k=r is true

$$\Rightarrow (a * b)^r = a^r * b^r$$

Now, we will prove when k=r+1

$$\Rightarrow (a * b)^{r+1} = a^{r+1} * b^{r+1}$$

$$= a^r * b^r * a * b$$

$$= a^r * a * b^r * b \qquad (since \ a * b = b * a)$$

$$= a^{r+1} * b^{r+1}$$

$$\therefore (a*b)^k = a^k * b^k$$

2) Given  $a^2 = e$  for every element a of the group (G,\*). show that the group must be a commutative.

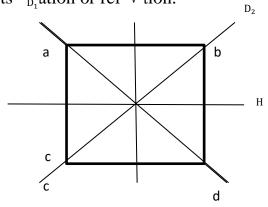
Proof: let 
$$a, b \in G \ni a^2 = e, b^2 = e$$
  
 $a^2 * b^2 = e * e = e \dots (1)$   
 $(a * b)^2 = e \dots (2)$   
 $(a * b)^2 = e \dots (2)$   
 $(a * b)^2 = (a * b)^2$   
 $(a * a * b * b = (a * b) * (a * b)$   
 $(a * b) * b = (a * b) * (a * b)$   
 $(a * b) * b = (b * a) * b$   
 $(a * b) * b = (b * a) * b$   
 $(a * b) * b = (b * a) * b$   
 $(a * b) * b = (b * a) * b$   
 $(a * b) * b = (b * a) * b$   
 $(a * b) * b = (b * a) * b$   
 $(a * b) * b = (b * a) * b$ 

3) Suppose that  $G = \{1, \frac{-1+\sqrt{3}i}{2}, \frac{-1-\sqrt{3}i}{2}\}$  and (.) is the ordinary multiplicative operation show whether that (G,.) constitutes a group or not? Sol.:

|                           | 1                         | $\frac{-1+\sqrt{3} i}{2}$ | $\frac{-1-\sqrt{3} i}{2}$ |
|---------------------------|---------------------------|---------------------------|---------------------------|
| 1                         | 1                         | $\frac{-1+\sqrt{3}i}{2}$  | $\frac{-1-\sqrt{3} i}{2}$ |
| $\frac{-1+\sqrt{3} i}{2}$ | $\frac{-1+\sqrt{3} i}{2}$ | $\frac{-1-\sqrt{3} i}{2}$ | 1                         |
| $\frac{-1-\sqrt{3} i}{2}$ | $\frac{-1-\sqrt{3} i}{2}$ | 1                         | $\frac{-1+\sqrt{3} i}{2}$ |

## The group of symmetries of a square

The eight symmetries of the square are  $G = \{R_{360}, R_{90}, R_{180}, R_{270}, H, V, D_1, D_2\}$ and (o) is an operation on G represents  $D_1$  ation or ref v tion.



| О                | R <sub>90</sub>  | R <sub>180</sub>          | R <sub>270</sub> | R <sub>360</sub> | Н                | V                | $D_1$            | $D_2$            |
|------------------|------------------|---------------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| R <sub>90</sub>  | R <sub>180</sub> | R <sub>270</sub>          | R <sub>360</sub> | R <sub>90</sub>  | $D_1$            | $D_2$            | V                | Н                |
| R <sub>180</sub> | R <sub>270</sub> | R <sub>360</sub>          | R <sub>90</sub>  | R <sub>180</sub> | V                | Н                | $D_2$            | $D_1$            |
| R <sub>270</sub> | R <sub>360</sub> | R <sub>90</sub>           | R <sub>180</sub> | R <sub>270</sub> | $D_2$            | $D_1$            | Н                | V                |
| R <sub>360</sub> | R <sub>90</sub>  | R <sub>180</sub>          | R <sub>270</sub> | R <sub>360</sub> | Н                | V                | $D_1$            | $D_2$            |
| Н                | $D_2$            | V                         | $D_1$            | Н                | R <sub>360</sub> | R <sub>180</sub> | R <sub>270</sub> | R <sub>90</sub>  |
| V                | $D_1$            | Н                         | $D_2$            | V                | R <sub>180</sub> | R <sub>360</sub> | R <sub>90</sub>  | R <sub>270</sub> |
| $D_1$            | Н                | $D_2$                     | V                | $D_1$            | R <sub>90</sub>  | R <sub>270</sub> | R <sub>360</sub> | R <sub>180</sub> |
| $\overline{D}_2$ | V                | $\overline{\mathrm{D_1}}$ | Н                | $\overline{D_2}$ | R <sub>270</sub> | R <sub>90</sub>  | R <sub>180</sub> | R <sub>360</sub> |

 $\Rightarrow$  (G, o) is a group but is not comm. Group.

## (Permutation) or Symmetric

<u>**Definition:**</u> Let A be a non-empty set, then every (1-1) and onto map is called (permutation)or symmetric on A and denoted by:

$$symm(A) = \begin{cases} (1-1) \\ f: f: A \to A \end{cases}$$
 the set of all permute on A. (onto)

**Example:** Let  $A=\{x,y\}$  write all permute on A.

Solution: symm(A) = 
$$\begin{cases} f: f: A \to A \\ (onto) \end{cases}$$

$$symm(A) = \{i_A, f\} = \{ \begin{pmatrix} x & y \\ x & y \end{pmatrix}, \begin{pmatrix} x & y \\ y & x \end{pmatrix} \}$$

#### Remark:

- 1) If A is a finite set, then symm(A) is a finite.
- 2) If A contains n elements (finite), then symm(A) contains n! elements.
- 3) We shall written symm(A) as  $S_n$  or  $P_n$  where A contains (n) elements.
- 4) The identity element for  $(P_n, o)$  is the permutation  $\begin{pmatrix} 1 & 2 & ... & n \\ 1 & 2 & ... & n \end{pmatrix}$ .
- 5) The multiplicative inverse of any permutation  $f \in S_n$  is described by  $f^{-1} = \begin{pmatrix} f(1) & \dots & f(n) \\ 1 & \dots & n \end{pmatrix}$ .

**Example**: If  $A=\{1,2,3\}$  write all permute on A. then show  $(P_3, o)$  is a group of symmetric.

**Solution:**  $P_n = P_3 = 3! = 6$ 

$$f_6 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$

$$\begin{array}{l} \mbox{$\stackrel{.}{.}$} \ P_3 = \{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, f_6 \\ = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \} \end{array}$$

(P<sub>3</sub>, o) is a group? H.W

**<u>Definition:</u>** Let  $n_1, n_2, ..., n_k$  distinct integers between 1 and n. if a permutation  $f \in S_n$  such that:

$$\begin{aligned} f(n_i) &= n_{i+1} & \text{for } 1 \leq i < k \\ f(n_k) &= n_1 & \text{and } f(n) = n & \forall \ n \notin (n_1, n_2, ..., n_k) \end{aligned}$$

Then f is said to be a k-cycle or a cycle of length k.

In the symmetric group  $(P_5, o)$ 

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 5 & 2 & 4 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 5 & 3 \end{pmatrix} \qquad 3 - \text{cycle}$$
also
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 1 & 2 & 3 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 4 & 3 & 2 \end{pmatrix} \qquad 4 - \text{cycle}$$

• The cycles can be multiplied by the functional composition operation thus in  $(P_5, o)$  we have

$$(2 5 3) \circ (1 2 4 3) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 5 & 2 & 4 & 3 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 1 & 3 & 5 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 1 & 2 & 3 \end{pmatrix}$$

$$f(1)=5$$
,  $f^2(1) = f(f(1)) = f(5) = 3$ 

$$f^3(1) = f(f^2(1)) = f(3) = 1$$

Find  $f^2(2)$ .

**<u>Definition</u>**: the simplest of permutation are 2 - cycle this called transposition.

 $1 - \text{cycle} \rightarrow \text{Identity permutation}$ .

Corollary: every permutation may be expressed as the product of transpositions that is:

$$(1,2,...,k0=(1k)(1k-1)...(12)$$

**Example**: 
$$f = (1 \ 2 \ 4 \ 3) = (13)(14)(12)$$

**Note**: A permutation of a finite set is even or odd a according to weather it can be expressed as a product of an even number of transposition or the product of an odd number of transposition.

Example: (123)=(13)(12) even

**<u>Definition</u>**: A group (G,\*) is said to be cyclic if there exists an element  $\alpha \in G$ such that every element of G is of the form a<sup>k</sup> for some integer k.

Such that an element a is called a generator of the group. The cyclic group G is denoted by G=(a). that is

$$G = \{a^k : k \in Z\}$$

 $k \in \mathbb{Z}$ .

**Example1**: (Z,+) is a cyclic group generated by 1 &-1. that is

$$Z = \{k(1): k \in Z\} \& Z = \{k(-1): k \in Z\}.$$

**Example 2:** let  $G=\{1,-1,I,-i\}$  and (.) is an ordinary multiplicative operation. Show that (G,.) is a cyclic group?

Solution: (G,.) is a group

(G,.) is a cyclic group generated by I &-i

#### The Group Of Integers Modulo n:

Definition: let n be a fixed positive integer. Two integers a and b are said to be congruent modn, written:  $a \equiv b \pmod{n}$  if and only if the difference (a-b) is divisible by n. that is

$$a \equiv b \pmod{a + b} = kn \text{ for some } k \in Z$$

For example, if n=7 we have  $3 \equiv 24 \pmod{7} \rightarrow 3 - 24 = 7k$  for some  $k \in \mathbb{Z}$ 

$$\rightarrow k = \frac{-21}{7} = -3$$

**Example 2**:  $10 \not\equiv 4 \pmod{5}$  since  $10 - 4 \not\equiv 5$ k for some  $k \in \mathbb{Z}$ 

Note/if a-b is not divisible by n we say that a is in congruent to b modulo n and in this case, write  $a \not\equiv b \pmod{n}$ 

**Definition**: Division algorithm

Let a and b be integers with b>0 then there exist unique integers q and r with property that a=bq+r where  $0 \le r < b$ .

If b/a then r=0 that is a=bq.

**Example:** let a=19 & b=5 then 19=5(3)+4  $0 \le 4 < 5$ 

**Theorem6**: let n be a fixed positive integer and a,b be arbitrary integers. Then  $a \equiv b \pmod{n}$  iff a and b have the same remainder when divided by n.

Proof: suppose that  $a \equiv b \pmod{n}$ 

 $\Rightarrow$  a=b+kn for some integer k.

On division by n,b leaves a certain remainder r:

$$b=qn+r$$
 where  $0 \le r < n$  ,  $q \in Z$ .

thus 
$$a=b+kn = (qn+r)+kn$$

$$=(q+k)n+r$$

Which shows a has the same remainder as b.

#### **Conversely:**

Let  $a = q_1 n + r$  and  $b = q_2 n + r$  with the same remainder  $0 \le r < n$ .

Then

$$a - b = (q_1 n + r) - (q_2 n + r) = (q_1 - q_2)n$$
 with  $(q_1 - q_2) \in Z$ 

Hence, n is a factor of a-b and so  $a \equiv b \pmod{n}$ 

**Theorem7**: let n be a fixed positive integer and a,b,c arbitrary integers. Then

- 1)  $a \equiv a \pmod{n}$
- 2) if  $a \equiv b \pmod{n}$  then  $b \equiv a \pmod{n}$
- 3) if  $a \equiv b \pmod{a}$  and  $b \equiv c \pmod{a}$  then  $a \equiv c \pmod{a}$ .
- 4) if  $a \equiv b \pmod{n}$  and  $c \equiv d \pmod{n}$  then  $a + c \equiv b + d \pmod{n}$ ,  $ac \equiv b \pmod{n}$ bd (modn)
- 5) if  $a \equiv b \pmod{n}$ , then,  $ac \equiv bc \pmod{n}$ .
- 6) if  $a \equiv b \pmod{n}$ , then  $a^k \equiv b^k \pmod{n}$  for every positive integer k.

**proof(1)**: for any integer a, since a-a=0.n  $0 \in \mathbb{Z}$ 

$$\Rightarrow$$
 a  $\equiv$  a (modn)

**Proof(2):** if  $a \equiv b \pmod{n}$  then a-b=kn,  $k \in \mathbb{Z}$ 

$$\Rightarrow$$
 a-b=kn ] (-1)

$$\Rightarrow$$
 - (a+b)=(-k)n

$$\Rightarrow$$
 b-a =(-k)n where  $-k \in Z$ 

$$\Rightarrow$$
 b  $\equiv$  a (modn)

**Proof(3):** if  $a \equiv b \pmod{n}$  and  $b \equiv c \pmod{n}$  then a-b=kn and b-c=hn, for some k,  $h \in Z$ 

$$\Rightarrow$$
 a-b=kn ... (1)

$$a-c=kn+hn$$

$$\Rightarrow$$
 a-c =(k+h)n, (k+h)  $\in$  Z

$$\Rightarrow$$
 a  $\equiv$  c (modn)

**Proof(4):** if  $a \equiv b \pmod{a}$  and  $c \equiv d \pmod{b}$  then  $a - b = k_1 n \& c - d = k_2 n \otimes c$  $k_2n$  for some integers  $k_1, k_2 \in Z$ .

Now 
$$(a+c)-(b+d)=(a-b)+(c-d)$$

$$= k_1 n + k_2 n = (k_1 + k_2) n$$
 ,  $(k_1 + k_2) \in Z$ 

$$\Rightarrow (a+c)-(b+d)=(k_1+k_2)n$$

$$\Rightarrow (a + c) \equiv (b + d) \pmod{n}$$

Also/ 
$$ac = (b + k_1 n)(d + k_2 n)$$

$$= bd + (bk_2 + dk_1 + k_1k_2n)n$$

Since  $(bk_2 + dk_1 + k_1k_2n)$  is integer

$$\therefore ac = bd + k_3n \quad \text{where } k_3 = bk_2 + dk_1 + k_1k_2n$$

$$\Rightarrow$$
 ac = bd =  $k_3$ n

$$\Rightarrow$$
 ac  $\equiv$  bd (modn).

**Proof(5):** if  $a \equiv b \pmod{n}$  then a-b=kn,  $k \in \mathbb{Z}$ 

and 
$$c \equiv c \pmod{n}$$
 for  $0 \in Z$  then  $ac - bc = (a-b)c$ 

= knc

$$= (kc)n$$
,  $kc \in Z$ 

$$∴$$
 ac  $\equiv$  bc (modn).

**Proof(6):** we prove (6) by inductive argument

Since 
$$a \equiv b \pmod{n} \Rightarrow a^1 \equiv b^1 \pmod{n}$$

 $\Rightarrow$  the statement true for k=1.

Assuming it holds for an arbitrary k, we must show that it also holds for k+1.

Since  $a^k \equiv b^k \pmod{n}$  and  $a \equiv b \pmod{n}$  from (4)

$$\Rightarrow a^k a \equiv b^k b \pmod{n}$$

$$\Rightarrow a^{k+1} \equiv b^{k+1} \pmod{n}$$

$$\therefore a^k \equiv b^k \text{ (modn)} \quad , k \in Z^+.$$

Definition: Congruence class

Let  $a \in Z$  the set of all integers congruent to a module n is denoted by [a] where

$$[a] = \{x \in Z : x \equiv a \pmod{n}\}$$
$$[a] = \{x \in Z : x \equiv a + kn, k \in Z\}$$

[a] is called the congruence class of a.

**Example**: suppose that we are dealing with congruence modulo 3. Then find [0], [1], [-7].

#### **Solution:**

$$[0] = \{x \in \mathbb{Z}: x \equiv 0 \pmod{3}\}$$
$$= \{x \in \mathbb{Z}: x = 3k, k \in \mathbb{Z}\}$$
$$= \{\dots, -9, -6, -3.0.3.6.9...\}$$

**Theorem 8**: Let  $n \in \mathbb{N}$  then there is n of equivalent classes.

i.e. there is [0], [1], [2],...,[n-1] of equivalent classes.

 $\underline{\textbf{Note}}$ : the set of all congruence classes is denoted by  $Z_n$  where

$$Z_n = \{[0], [1], [2], ..., [n-1]\}$$

For example, if n=4 then  $Z_4 = \{[0], [1], [2], [3]\}$  s.t.

$$[0] = \{..., -8, -4, 0, 4, 8, 12, ...\}$$
find [1], [2], [3]

<u>Theorem 9</u>: Len n be a positive integer and  $Z_n$  be defined as  $Z_n = \{[0], [1], [2], ..., [n-1]\},$ 

then:

- 1) For each  $[a] \in Z_n$ ,  $[a] \neq \emptyset$ .
- 2) If  $[a] \in Z_n$  and  $[b] \in Z_n$ , then [a] = [b] that is, any element of the congruence class [a] determines the class.
- 3) For any [a], [b]  $\in Z_n$  where [a]  $\neq$  [b] then [a]  $\cap$  [b] =  $\emptyset$ .
- 4)  $\cup \{[a]: a \in Z\} = Z$ .

**<u>Definition</u>**: A binary operation  $(+_n)$  may be defined on  $Z_n$  as follows:

For each [a], 
$$[b] \in Z_n \Rightarrow [a] +_n [b] = [a + b]$$

<u>Theorem10:</u> For each positive integer n, the mathematical system  $(Z_n, +n)$  forms a commutative group, known is the (group of integers module n).

**Proof:** let [a], [b]  $\in Z_n$ 

- 1)  $[a]+_n[b] = [a+b] \in Z_n$  $\therefore (Z_n, +_n)$  is a mathematical system
- 2)  $[a]+_n([b]+_n[c]) = [a]+_n([b+c])$ = [a+(b+c)] = [(a+b)+c]=  $[a+b]+_n[c] = ([a]+_n[b]+_n[c])$
- $\therefore$  +<sub>n</sub> is associative operation on Z<sub>n</sub>.
- 3)  $\forall [a] \in Z_n, \exists [0] \in Z_n \text{ s. t.}$   $[a]+_n[0] = [a+0] = [a] = [0+a] = [0]+_n[a]$   $\therefore [0] \text{ is the identity element of } +_n$
- 4) If  $[a] \in Z_n$ , then  $[n-a] \in Z_n$  and  $[a] +_n [n-a] = [a++(n-a)] = [n] = [0]$ So that  $[a]^{-1} = [n-a]$
- 5)  $[a]+_n[b] = [a+b] = [b+a] = [b]+_n[a]$  $\therefore (Z_n, +_n)$  is a commutative group.

**Example**: show that  $(Z_4, +_4)$  is a comm. group.

<u>Note</u>: for simplicity, it is convenient remove the brackets in the designation of the congruence classes of  $Z_n$ . thus we often write  $Z_n = \{\{0,1,2,...,n-1\}$ 

**H.W./** Let 
$$G = \{(a, b): (a, b^n) \in \mathbb{Z}_2\}$$
 show that  $(G, +)$  is a group?

## **Subgroups**

**<u>Definition</u>**: Let (G,\*) be a group and  $\emptyset \neq H \subseteq G$ . The pair (H,\*) is said to be a subgroup of (G,\*) if (H,\*) is itself a group.

**Example1**: If Z<sub>e</sub> and Z<sub>o</sub> denote the sets of even and odd integers respectively then  $(Z_e,+)$  is a subgroup of the group (Z,+) while  $(Z_o,+)$  is not.

**Example2**: consider  $(Z_6, +_6)$  the group of integers modulo 6. If  $H=\{0,2,4\}$  then (H, +<sub>6</sub>) is a subgroup of  $(Z_6, +<sub>6</sub>)$ .

**Note**: each group (G,\*) has at least two subgroups  $(\{e\},*)$  and (G,\*), these subgroups are known trivial subgroup and any subgroup different from these subgroup known proper subgroup.

**Theorem11**: Let (G,\*) be a group and  $\emptyset \neq H \subseteq G$  then (H,\*) is a subgroup of (G,\*) iff  $a,b \in H$  implies  $a*b^{-1} \in H$ .

**Proof:**  $\Rightarrow$ ) Let (H,\*) is a subgroup of (G,\*) we have prove  $a * b^{-1} \in H$ 

Let a, b  $\in$  H then a, b<sup>-1</sup>  $\in$  H

$$\Rightarrow$$
 a \* b<sup>-1</sup>  $\in$  H ( since \* closure)

- $\Leftrightarrow$  Let  $a * b^{-1} \in H$  then
  - 1) The operation \* in H is a associative binary operation because H subset of G.
  - 2) Let  $a, b \in H \Rightarrow a * b^{-1} \in H$ If  $a=b \Rightarrow b * b^{-1} \in H \Rightarrow e \in H$
  - 3) :  $b \in H$  and  $e \in H \Rightarrow e * b^{-1} \in H \Rightarrow b^{-1} \in H$
  - 4) Let  $a \in H$  and  $b^{-1} \in H \Rightarrow a * (b^{-1})^{-1} \in H \Rightarrow a * b \in H$

 $\therefore$  (H,\*) is a subgroup of (G,\*).

**Example:**  $(Z_{12}, +_{12})$  is a group let  $H=\{0,4,8\}$  then  $(H, +_{12})$  is a subgroup of  $(Z_{12}, +_{12})$  according (theorem11) since::

$$(0)^{-1} = 0$$
 ,  $(4)^{-1} = 8$ ,  $(8)^{-1} = 4$ 

$$0* (4)^{-1} = 0 +_{12} 8 = 8 \in H$$

$$0*(8)^{-1} = 0 +_{12} 4 = 4 \in H$$

That is a, b  $\in$  H a $+_{12}$  b $^{-1}$   $\in$  H

Center of a group

**Definition:** let (G,\*) be a group the center of G is the center (G) and denoted by cent (G) s.t.:

$$cent(G) = \{ c \in G: c * x = x * c, \forall x \in G \}$$

Note:  $cent(G) \neq \emptyset$  since  $\exists e \in G$  s. t.

$$e * x = x * e, \forall x \in G \rightarrow e \in cent(G)$$

**Theorem 12:** Let (G,\*) be a group then cent (G)=G iff G is a comm. group.

**Theorem 13:** let (G,\*) be a group then (cent(G),\*) is a subgroup of (G,\*).

**Proof**: cent(G)  $\neq \emptyset$  since  $e \in cent(G)$ 

Let  $a, b \in cent(G)$ 

a\*x = x\*a,  $b*x = x*b \quad \forall x \in G$  [by definition of cent(G)]

$$(a*b^{-1})*x = a*(b^{-1}*x)$$
 (\* is a sso.)

 $= a^* (x^{-1} * b)^{-1}$  from theorem  $(a * b)^{-1} = b^{-1} * a^{-1}$ 

$$= a * (b * x^{-1})^{-1}$$
 (since  $b \in cent(G)$ )

$$= (a*x)*b^{-1}$$
 (\* is a sso.)

$$=(x*a)*b^{-1}$$
 (since  $a \in cent(G)$ )

$$= x * (a*b^{-1})$$
 (\* is a sso.)

$$a*b^{-1} \in cent(G)$$

 $\therefore$  (cent(G),\*) is a subgroup of (G,\*).

**Theorem 14:** If  $(H_i, *)$  is the collection of subgroups of (G, \*) then  $(\cap H_i, *)$  is also subgroup of G.

**<u>Proof</u>**: 1)  $\cap$  H<sub>i</sub>  $\neq$  Ø since  $\exists$  e  $\in$  H<sub>i</sub>,  $\forall$  i

$$\Rightarrow e \in \cap H_i$$

2) let 
$$x, y \in \cap H_i \Rightarrow x, y \in H_i$$
,  $\forall i$ 

$$\Rightarrow$$
 x \* y<sup>-1</sup>  $\in$  H<sub>i</sub> ,  $\forall$ i ( since H<sub>i</sub> subgroups)

$$\Rightarrow x*y^{-1}\in \cap H_i$$

 $\Rightarrow$  ( $\cap$  H<sub>i</sub>,\*) is also subgroup of G.

Example:  $(Z_{15}, +_{15})$  is a group and  $H_1 = \{0,3,6,9,12\}, H_2 = \{0,5,10\}$  are subgroups of  $Z_{15}$  then

 $H_1 \cap H_2 = \{0\} \rightarrow (H_1 \cap H_2, +_{15})$  is subgroups of  $Z_{15}$ 

 $H_1 \cup H_2 = \{0,3,5,6,9,10,12\}$ 

 $(H_1 \cup H_2, +_{15})$  is not subgroups of  $Z_{15}$ 

**Theorem15**: Let  $(H_1,*)$  and  $(H_2,*)$  are two subgroups of (G,\*). Then  $(H_1 \cup H_2,*)$  $H_2,*$ ) is a subgroup of (G,\*) if and only if  $H_1 \subseteq H_2$  or  $H_2 \subseteq H_1$ .

**<u>Proof</u>**:  $\Rightarrow$ ) Let  $H_1 \subseteq H_2$  and let  $a, b \in H_1$ 

 $\therefore$  a \* b<sup>-1</sup>  $\in$  H<sub>1</sub> (since (H<sub>1</sub>,\*) is a subgroup)

 $\therefore$  a \* b<sup>-1</sup>  $\in$  H<sub>1</sub> (since H<sub>1</sub>  $\subseteq$  H<sub>2</sub>)

Similarly if  $H_2 \subseteq H_1$ 

 $\Rightarrow$  a \* b<sup>-1</sup>  $\in$  H<sub>1</sub>  $\cup$  H<sub>2</sub>

 $\Leftarrow$ ) Let  $(H_1 \cup H_2,*)$  is a subgroup and let  $H_1 \not\subseteq H_2$  or  $H_2 \not\subseteq H_1$ 

Let  $a \in H_1$  and  $a \notin H_2$   $(a \in H_1 - H_2)$ 

 $b \in H_2$  and  $b \notin H_1$  ( $b \in H_2 - H_1$ )

Now let  $a * b \in H_1$  (since  $(H_1,*)$  is a subgroup)

∴  $a^{-1} * (a*b) \in H_1$ 

 $(a^{-1} * a) * b \in H_1$ 

 $e * b \in H_1 \rightarrow b \in H_1 C!$ 

also  $a * b \in H_2$  (since  $(H_2,*)$  is a subgroup)

 $(a*b)*b^{-1} \in H_2 \to a \in H_2$  C!

 $\therefore$  H<sub>1</sub>  $\subseteq$  H<sub>2</sub> or H<sub>2</sub>  $\subseteq$  H<sub>1</sub>

**Example**: (Z,+) is a group, ((2),+) and ((4),+) are subgroups of the group (Z,+).

Since  $((4),+) \subseteq ((2),+)$  then (by the. 15)  $((2) \cup (4),+) = ((2),+)$  is subgroup of the group (Z,+).

**<u>Definition</u>**: If (G, \*) is a group and  $a \in G$  write  $(a) = \{a^k : k \in Z\}$ , then ((a),\*) is called the cyclic subgroup of the group (G,\*) generated by a.

**Example 1**: (Z,+) is a group and  $(2) = \{2k : k \in Z\}$ 

$$\Rightarrow$$
 (2)={ ..., -4,-2,0,2,4,6,...}

Then ((2),+) is a cyclic subgroup of (Z,+).

**Example2**:  $(Z_{12},+_{12})$  is a group,

$$(3) = \{3k \mod 12, k \in Z\}$$

 $=\{0,3,6,9\}$  thus  $((3),+_{12})$  is a cyclic subgroup of  $(Z_{12},+_{12})$ .

Example 3: the group of symmetries of the square is not cyclic but the subgroup:

 $(R_{90}) = \{ R_{90}, R_{180}, R_{270}, R_{360} \}$  is cyclic generated by the element  $R_{90}$ .

**Theorem16:** If ((a),\*) is a finite cyclic group of order n then  $(a)=\{e,a,a^2,\ldots,a^{n-1}\}$ 

**Example**:  $(Z_{15},+_{15})$  is a group

$$(5)=\{ 5^k, k \in Z \}$$

$$=$$
{5 $k$  :  $k \in Z$ }

$$={0,5^1,5^2}$$

 $\Rightarrow$ ((5), +<sub>15</sub>) is a cyclic group.

**Theorem17**: Every subgroup of a cyclic group is a cyclic.

**Example:** (Z,+) is a cyclic group generated by 1, -1 so Z=(1)=(-1)

Then by the **theorem 16** ((4),+) is a cyclic subgroup of (Z,+) also ((2),+), ((3),+)and in general ((n),+) is a cyclic subgroup of (Z,+)where  $n \in Z^+ \cup \{0\}$ .

**Definition**: let (G,\*) be a group and (H,\*), (K,\*) are two subgroups of G then the product of H and K is the set  $H * K = \{h * k : h \in H, k \in K\}$ .

## **Remark:**

- 1)  $H*H=H^2$
- 2) If  $H=\{a\}$  then H\*K=a\*K, if  $K=\{b\}$  then H\*K=H\*b.
- **3**) H\*K⊆G
- **4**) H ∪ K⊆ H\*K.

**Example:** In the group of symmetries of the square, consider the subgroups  $H=\{R_{360}, D_1\}$  and  $K=\{R_{360}, V\}$  then

 $H^*K \! = \; \{\; R_{360} \; o \; R_{360} \, , \, R_{360} \, oV, \, D_1 \, o \; R_{360}, \, D_1 \, o \; V \; \}$ 

$$= \{ R_{360}, V, D_1, R_{270} \}$$

(H\*K, o) is not subgroup of G.

**Theorem18:** Let (G,\*) be a group and (H,\*), (K,\*) are two subgroup of (G,\*)then (H\*K, \*) is

a subgroup of (G,\*) iff H\*K=K\*H.

**Proof**: suppose  $(H^*K, *)$  is a subgroup of (G, \*)

to prove  $H^*K = K^*H$  we should prove  $H^*K \subseteq K^*H$  and  $K^*H \subseteq H^*K$ 

let 
$$x \in H * K \Rightarrow x = a * b \ni a \in H, b \in K$$

: H \* K is a subgroup of G.

$$\Rightarrow x^{-1} \in H * K$$

$$x^{-1} = c * d \ni c \in H \land d \in K$$

$$x = (x^{-1})^{-1} = (c * d)^{-1} = d^{-1} * c^{-1} \ni d^{-1} \in K \land c^{-1} \in H$$

$$x = d^{-1} * c^{-1} \in K * H$$

$$: H*K \subseteq K*H$$

Let 
$$y \in K * H \Rightarrow y = f * g \ni f \in K, g \in H$$

: K \* H is a subgroup of G.

$$\Rightarrow y^{-1} \in K*H$$

$$y^{-1} = h * l \ni h \in K \land l \in H$$

$$y = (y^{-1})^{-1} = (h*l)^{-1} = l^{-1}*h^{-1} \ni l^{-1} \in H \land h^{-1} \in K$$

$$y = \ l^{-1} * h^{-1} \in H * K$$

$$\Rightarrow$$
 H\*K= K\*H

**Conversely**: let  $H^*K = K^*H$ 

1)  $H*K \neq \emptyset$  since  $e=e*e \in H*K$ Also  $H^*K \subseteq G$ 

Now, let  $x, y \in H * K$ , T. P.  $x * y^{-1} \in H * K$ 

$$x \in H * K \Rightarrow x=a*b \ni a \in H \land b \in K$$

 $y \in H * K \Rightarrow y=c*d \ni c \in H \land d \in K$ 

$$x * y^{-1} = (a * b) * (c * d)^{-1} = (a * b) * (d^{-1} * c^{-1})$$

$$= a* (b*d^{-1}) * c^{-1}$$

:(H,\*), (K,\*) are two subgroup of  $(G,*) \Rightarrow b*d^{-1} \in K \& c^{-1} \in H$ 

∴
$$(b*d^{-1})*c^{-1} \in K*H$$

But H\*K=K\*H

Then  $(b*d^{-1})*c^{-1} \in H*K \Rightarrow \exists p \in H, q \in K \ni (b*d^{-1})*c^{-1} = p*q$ 

Now, 
$$a^* (b^*d^{-1}) * c^{-1} = (a * p) * q \in H * K$$

$$\therefore x * y^{-1} \in H * K$$

 $\therefore$  (H\*K, \*) is a subgroup of (G,\*).

Example:  $(Z_{12},+_{12})$  is a comm. Group,  $H=\{0,6\}$  and  $K=\{0,4,8\}$  such that  $(H,+_{12})$  and  $(K,+_{12})$  are subgroups of  $(Z_{12},+_{12})$  show that  $(H*K,+_{12})$  is a subgroup of  $(Z_{12},+_{12})$ .

$$H+_{12}K=\{0,2,4,6,8,10\}$$

 $\therefore$ (H\*K, +<sub>12</sub>) is a subgroup of (Z<sub>12</sub>,+<sub>12</sub>).

**Definition:** Let (H, \*) be a subgroup of the group (G, \*) and let  $a \in G$  then the set  $a * H = \{a * h : h \in H\}$  is called a left coset of H in G and  $H * a = \{h * a : h \in H\}$ is called right coset of H in G and a representative a \* H and H \* a.

If the group (G,\*) is commutative then a \* H = H \* a.

Example: let  $(Z_{10},+_{10})$  be a group and  $H=\{0,5\}$  be a subgroup of  $(Z_{10},+_{10})$  find all cosets of H in  $Z_{10}$ .

**Theorm19**: let (H, \*) be a subgroup of (G, \*) and  $a \in G$  then :

1) H is itself left coset of H in G.

**Proof**: since  $e \in G$ 

$$\Rightarrow$$
e \* H = {e \* h: h ∈ H}=H

2) IF ((G,\*) is a belian group then a\*H=H\*a

**proof**: 
$$a * H = \{a * h : h \in H\} = \{h * a : h \in H\} = H * a$$

the converse is not true.

**Example**:  $(S_3, o)$ ,  $H = \{f_1, f_5, f_6\}$ ,  $a = f_4$ 

 $f_4 ext{ o } H = \{ f_4, f_2, f_3 \}, H ext{ o } f_4 = \{ f_4, f_2, f_3 \}$ 

 $\Rightarrow$  f<sub>4</sub> o H= H o f<sub>4</sub>

but  $(S_3, o)$  is not a belain group

**3**) a∈ a \* H

**Proof**: since e∈ H  $\Rightarrow$  a=a\*e $\in$  a \* H

**Theorem20**: If (H,\*) is a subgroup of the group (G,\*) then a\*H=H if and only if  $a \in H$ .

**Proof**: suppose that (H,\*) is a subgroup of the group (G,\*) such that a\*H=Hsince  $e \in H$  and for every  $a \in G$  we have  $a = a * e \in a * H$ .

But a\*H=H hence  $a \in H$ .

**Conversely:** Let  $a \in H$  to prove that a\*H=H.

Let  $x \in a^*H \Rightarrow x=a^*h$  for some  $h \in H$ 

Since  $a \in H$  and  $h \in H \Rightarrow a * h \in H \{(H, *) \text{ is a subgroup}\}$ 

Hence  $x \in H$ 

 $\therefore$  a \* H  $\subseteq$  H ... (1)

Now, Let  $h \in H \Rightarrow h = e * h = (a * a^{-1}) * h = a * (a^{-1} * h)$ 

Since  $a \in H \Rightarrow a^{-1} \in H \quad \{(H, *) \text{ is a subgroup}\}\$ 

 $\Rightarrow a^{-1} * h \in H$ 

Then  $a * (a^{-1} * h) \in a * H$ 

Hence  $h \in a * H$ 

 $:H \subseteq a*H \dots (2)$ 

From (1) & (2) we have a\*H=H.

**Theorem21:** If (H,\*) is a subgroup of the group (G,\*) then a\*H=b\*H if and only if  $a^{-1} * b \in H$ .

**Proof**: Let  $a^*H=b^*H$  then we have to prove  $a^{-1}*b \in H$  that mean

 $\exists h_1, h_2 \in H$ 

### Theorem22:

 $\Rightarrow$  b \* h<sub>3</sub> = a \* h<sub>4</sub>

 $\Rightarrow$  b \* H = a \* H

If (H,\*) is a subgroup of the group (G,\*) then left(right) cosets of H in G form a partition of the set G.

**Example**: consider  $(Z_{12},+_{12})$  the group of integer modulo 12. If we take  $H=\{0,4,8\}$ , Then  $(H, +_{12})$  is a subgroup of  $(Z_{12}, +_{12})$  the left cosets of H in  $Z_{12}$  are

$$0+_{12} H = H = 4+_{12} H = 8+_{12} H$$

$$1+_{12} H = \{1,5,9\} = 5+_{12} H = 9+_{12} H$$

$$2+_{12} H = \{2,6,10\} = 6+_{12} H = 10+_{12} H$$

$$3+_{12} H = \{3,7,11\} = 7+_{12} H = 11+_{12} H$$

$$H \cup 1+_{12} H \cup 2+_{12} H \cup 3+_{12} H = Z_{12}$$

Also

$$H \cap 1+_{12} H \cap 2+_{12} H \cap 3+_{12} H = \emptyset$$

Thus the left (cosets) of H in  $Z_{12}$  form a partition of the set  $Z_{12}$ .

**<u>Definition</u>**: If (H,\*) is a subgroup of (G,\*) the index of H is the number of coset (left or right) of H in G which is denoted by r.

**<u>Definition</u>**: the number of elements in a group (G,\*) is called the order of G.

**Theorem23**: (Lagrang theorem)

The order and index of any of any subgroup of a finite group divides the order of the group.

That is order (G)=index(H). order(H)

Or 
$$o(G)=o(H).r$$

Proof: suppose G be a finite group  $\ni$  o(G) = n and H be a subgroup of G  $\ni$  o(H) = m .

Let r is the index of H in G

Let  $a_1 * H, a_2 * H, ..., a_r * H$  are left cosets of H.

$$a_1 * H \cup a_2 * H \cup ... \cup a_r * H = G$$

and

$$a_1 * H \cap a_2 * H \cap ... \cap a_r * H = \emptyset$$

$$o(a_1 * H) + o(a_2 * H) + \cdots + o(a_r * H) = o(G)$$

$$m + m + \cdots + m = n$$

$$\Rightarrow rm = n$$

$$\Rightarrow r.o(H) = o(G)$$

**Example**: let  $G=\{1,-1,i,-i\}$ , (G,.) is a group and  $H=\{1,-1\}$  where (H,.) is a subgroup of (G,.). The left cosets of H are

$$-1.H = \{-1,1\} = H$$

$$i.H=\{i,-i\}$$

$$-i.H = \{i, -i\}$$

∴ the distinct left cosets of H are {1.H, i.H}

∴index H=2 and by Lagrange's theorem

o(G)=o(H).r

$$r = {o(G) \over o(H)} = {4 \over 2} = 2$$

**<u>Definition</u>**: A subgroup (H,\*) of the group (G,\*) is said to be normal (or invariant) in (G,\*)iff every left coset of H in G is also a right coset of H in G that is a\*H=H\*a for every  $a \in G$ .

**Example**: The subgroup  $((4),+_{12})$  is normal in  $\mathbb{Z}_{12}$  since:

Left 
$$H=(4)=\{0,4,8\}$$

$$0+_{12} H = H$$
,  $H+_{12}0 = H$   
 $1+_{12} H = \{1,5,9\}$ ,  $H+_{12} 1 = \{1,5,9\}$   
 $2+_{12} H = \{2,6,10\}$ ,  $H+_{12} 2 = \{2,6,10\}$   
 $\vdots$   
 $a+_{12} H = H+_{12} a$  for every  $a \in H$ 

#### **Remarks**:

- 1) Every subgroup of a commutative group is normal.
- 2) We denote for any normal subgroup (H,\*) of (G,\*) by  $H\Delta G$ .
- 3)  $\{e\}\Delta G$ .
- 4) cent(G) $\Delta$ G.

**<u>Definition:</u>** If (H,\*) is a normal subgroup of the group (G,\*) then we shall denote the collection of distinct cosets of H in G by G/H:

$$G/H = \{a * H : a \in G\}$$

A rule of composition ⊗ may be defined on G/H by the formula

$$(a*H) \otimes (b*H)=(a*b)*H \quad \forall a,b \in G$$

 $\therefore$  (G/H, $\otimes$ ) is called quotient group of G by H.

**Theorem 24**: let  $H\Delta G$ . then  $(G/H, \otimes)$  is quotient group.

Proof: 1)  $\forall$  a, b  $\in$  G s. t:

$$(a*H) & (b*H) \in G/H$$

Then 
$$(a*H) \otimes (b*H)=(a*b)*H \in G/H$$

Since  $a * b \in G$  [(G,\*)is a group]

- $: (G/H, \otimes)$  is a mathematical system.
- 2) Let a, b,  $c \in G$  s. t.:

$$[(a * H) \otimes (b * H)] \otimes (c * H) = (a * H) \otimes [(b * H) \otimes (c * H)]$$

$$((a * b) * H) \otimes (c * H) = (a * (b * c)) * H = (a * H) \otimes ((b * c) * H)$$

$$= (a * H) \otimes ((b * H) * (c * H))$$

 $\therefore \otimes$  is associative operation on G/H.

3) Identity 
$$e^*H=H \in G/H \ \forall \ a*H \in G/H$$
  
 $(a*H) \otimes (e*H) = (a*e)*H = a*H$   
 $(e*H) \otimes (a*H) = (e*a)*H = a*H$ 

4)  $\forall a * H \in G/H \exists a^{-1} * H \in G/H$ 

$$(a * H) \otimes (a^{-1} * H) = (a * a^{-1}) * H = e * H = H$$
  
 $(a^{-1} * H) \otimes (a * H) = (a^{-1} * a) * H = e * H = H$ 

 $\therefore$  (G/H, $\otimes$ ) is quotient group

**Example**: Let  $(Z_6, +_6)$  and  $H=\{0,3\}$  find  $Z_6/H$ ? then prove  $(Z_6/H, \otimes)$  is a quotient group.

$$Sol./Z_6/H=\{H,1+H,2+H\}$$

| $\otimes$ | Н   | 1+H | 2+H |
|-----------|-----|-----|-----|
| Н         | Н   | 1+H | 2+H |
| 1+H       | 1+H | 2+H | Н   |
| 2+H       | 2+H | Н   | 1+H |

## Homomorphism

**<u>Definition</u>**: Let (G,\*) and (G',o) be two groups and f is a function from G into G' i.e f:  $G \to G'$  then f is said to be a homomorphism from (G,\*) into (G',o) if and only if

$$f(a*b)=f(a) o f(b)$$

where  $a, b \in G$ 

**Example 1**: Define the function  $f: (R, +) \to (R - \{0\}, .)$  by  $f(a) = 2^a \ \forall a \in R$ 

Is f homo.?

$$Sol./f(a+b) = 2^{a+b}$$

$$= 2^{a}.2^{b}$$

$$= f(a). f(b)$$

 $\Rightarrow$  f is homo.

**Example 2:** Define the function  $f: (Z, +) \to (Z, +)$  by  $f(x)=x \ \forall x \in Z$ , is f homo.?

Sol.: L.s/ f(x+y)=x+y=f(x)+f(y)

 $\Rightarrow$  f is homo.

**Example 3**: Define the function  $f: (R^+, ...) \to (R, +)$  by  $f(x) = e^x \ \forall x \in R^+$ , is f homo

Sol.: let  $x, y \in R^+$ 

$$\Rightarrow$$
 f(x+y)= $e^{x.y}$ 

$$\neq e^x + e^y$$

$$\neq$$
 f(x) + f(y)

∴ f is not homo.

**Example4:** Suppose that (G,\*) and (G',o) are two subgroups with identity elements e and e' respectively. The function  $f: G \to G'$  given by f(a)=e' for each  $\forall a \in G$  is a homo.

$$f(a*b)=e'=e' o e'=f(a) o f(b)$$

∴ f is trivial homo.

**Example5:** let  $f: (G,*) \to (G,*)$  defined by  $f(a)=x^*a^*x^{-1} \ \forall a \in G$ , prove that f is a homo.

Sol. Let  $a, b \in G$  then

L.S./ 
$$f(a*b)=x*(a*b)*x^{-1}$$

$$R.S/f(a)*f(b)=(x*a*x^{-1})*(x*b*x^{-1})$$

$$= x*a*(x^{-1}*x)*b*x^{-1}$$

$$=x^*(a^*b^*)x^{-1}$$

∴ f is a homo.

**H.w**. In the following situations determine whether the indicated function f is homo. from the first group into the second group.

a) 
$$f(a)=-a$$
,  $f:(R,+) \to (R,+)$ .

b) 
$$f(a)=|a|$$
,  $f: (R - \{0\},.) \to (R^+,.)$ .

c) 
$$f(a)=a+1$$
,  $f:(Z,+) \to (Z,+)$ .

d) 
$$f(a)=a^2$$
,  $f: (R - \{0\},.) \to (R^+,.)$ .

e) 
$$f(a)=na$$
 (n a fixed integer),  $f:(Z, +) \rightarrow (Z, +)$ .

**Theorem25**: If f is a homo. from the group (G,\*) into the group (G',o) then:

- 1) f(e)=e' where e' is an identity element of G'.
- 2)  $f(a^{-1}) = (f(a))^{-1}$  $\forall a \in G$ .

**Theorem 26:** Let f be a homo. From the group (G,\*) into the group (G',o) then:

- 1) For each subgroup  $(H,^*)$  of  $(G,^*)$  the pair (f(H), o) is a subgroup of (G', o).
- 2) For each subgroup (H',0) of (G',0) the pair  $((f(H'))^{-1}, *)$  is a subgroup of (G,\*).

**Proof:** 1)  $f(H) \neq \emptyset$  since  $f(e) = e' \in f(H)$ 

Let 
$$f(a), f(b) \in f(H)$$

$$f(a) \circ (f(b))^{-1} = f(a) \circ f(b^{-1})$$

$$= f(a*b^{-1}) \in f(H)$$

$$\therefore$$
 (f(H), o) is a subgroup of (G',o).

**Proof:** 2)  $(f(H'))^{-1} \neq \emptyset$  since  $e \in (f(H'))^{-1}$ 

Let 
$$a, b \in (f(H'))^{-1} \ni f(a), f(b) \in H'$$

$$f(a*b^{-1}) = f(a) o f(b^{-1})$$

$$= f(a) o (f(b))^{-1} \in H'$$

$$f(a*b^{-1}) \in H' \Rightarrow a*b^{-1} \in (f(H'))^{-1}$$

$$\therefore$$
((f(H'))<sup>-1</sup>, \*) is a subgroup of (G,\*).

**<u>Definition:</u>** Let f be a homomorphism from the group (G,\*) into the group (G',o) and let e' be the identity element of (G',o). The kernel of f denoted by  $\ker(f)$  is the set:

$$\ker(f) = \{a \in G: f(a) = e'\}$$

**Example1**: consider the function:

 $f{:}\;(Z,+)\to (\{1,,-1,I,-I\},.)\;defined\;by\;f(n)=i^n\;\;for\;n\in Z,\,find\;ker(f).$ 

sol:/ 
$$f(n_1 + n_2) = i^{n_1 + n_2}$$

$$=i^{n_1}.i^{n_2} = f(n_1).f(n_2)$$

∴ f is a homo.

To find the kernel, we have

$$ker(f) = \{n \in Z: f(n) = e'\}$$

$$= \{n \in Z: f(n) = 1\}$$

$$= \{n \in Z: i^n = 1\}$$

$$= \{..., -8, -4, 0, 4, 8, ...\}$$

**Example 2**: Let  $f: (R, +) \to (R - \{0\}, .)$  is a homo. and defined by  $f(a) = 2^a$  for  $a \in R$ , find ker(f).

Sol:/

$$ker(f) = \{a \in R: f(a) = e'\}$$

$$= \{a \in R: f(a) = 1\}$$

$$= \{a \in R: 2^{a} = 1\}$$

$$= \{a \in R: 2^{a} = 2^{0}\} = \{0\}$$

**Example3**: Let  $f: (Z, +) \rightarrow (\{1, -1\}, .)$  such that:

$$f(a) = \begin{cases} 1 & \text{if a is even} \\ -1 & \text{if a is odd} \end{cases} \quad \forall a \in Z.$$

Show that:

- 1) f is a homo.
- 2) find kernel (f).

sol.: 1) if a, b  $\in Z_e$ 

$$\Rightarrow$$
 f(a + b) = f(a). f(b)

$$\Rightarrow$$
L.S/ f(a + b) = 1 , a + b  $\in$  Z<sub>e</sub>

$$R.S / f(a).f(b) = 1$$

2) if a, b 
$$\in Z_0$$

$$\Rightarrow$$
 f(a + b) = f(a). f(b)

$$\Rightarrow$$
L.S/  $f(a + b) = 1$  ,  $a + b \in Z_e$ 

$$R.S / f(a).f(b) = 1$$

3) if 
$$a \in Z_e \& b \in Z_o$$

$$\Rightarrow$$
 f(a + b) = f(a). f(b)

$$\Rightarrow$$
L.S/ f(a + b) = -1 , a + b  $\in$  Z<sub>o</sub>

$$R.S / f(a).f(b) = -1$$

∴ f is a homo.

$$ker(f) = \{a \in Z: f(a) = e'\}$$
  
=  $\{a \in Z: f(a) = 1\}$   
=  $\{Z_e\}$ 

**Theorem 27:** let  $f: (G,*) \to (G', o)$  be a group homo. then  $(\ker(f),*)$  is a subgroup of (G,\*).

Proof:

$$\ker(f) = \{x \in G: f(x) = e'\} \subseteq G$$

$$f(e) = e' \Rightarrow e \in \ker(f) \neq \emptyset$$

Let  $a, b \in ker(f)$ 

$$\Rightarrow$$
 f(a \* b<sup>-1</sup>) = f(a)of(b<sup>-1</sup>)

$$= f(a)o(f(b))^{-1}$$

$$= e'o(e')^{-1} = e'$$

$$\therefore f(a * b^{-1}) = e' \Rightarrow a * b^{-1} \in \ker(f)$$

 $\therefore$  (ker(f),\*) is a subgroup of (G,\*).

**Theorem 28:** let  $f: (G,*) \to (G', o)$  be a group homo. then  $\ker(f) = \{e\}$  iff f is one to one.

Proof:

$$\Rightarrow$$
 suppose  $ker(f)=\{e\}$  T.p. f is one to one

$$\Rightarrow$$
 Let  $f(a)=f(b)$ 

$$\Rightarrow$$
 f(a) o  $(f(b))^{-1}$  = f(b) o  $(f(b))^{-1}$ 

$$\Rightarrow$$
 f(a) o  $(f(b))^{-1} = e'$ 

$$\Rightarrow$$
 f(a \* b<sup>-1</sup>) = e' [f is homo.]

$$\Rightarrow$$
 a \* b<sup>-1</sup>  $\in$  ker(f) = {e}

$$\Rightarrow$$
 a \* b<sup>-1</sup> = e ] \* b

$$\Rightarrow$$
 a=b

$$\Leftarrow$$
 suppose f is (1-1) T.p. ker(f) ={e}

Let 
$$a \in \ker(f) \Rightarrow f(a) = e'$$

Since 
$$f(e) = e'$$

$$\Rightarrow$$
 f(a)= f(e)  $\Rightarrow$  a=e [ since f is 1-1]

$$\therefore \ker(f) = \{e\}.$$

## Reference

Introduction to modern abstract Algebra by :Dvaid M. Burton , 1978