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Definition: Let S be a nonempty set, a binary operation * is a function from the 

Cartesian product 𝐒 × 𝐒 𝐢𝐧𝐭𝐨 𝐒.   

Mathematically: Let S ≠ ∅ and ∗: S × S → S is a function s. t.∗ (a, b) = a ∗

b , ∀a, b ∈ S. 

Example1: Let +: N × N → N is a function that is a binary operation on N since 

∀a, b ∈ N: + (a, b) = a + b ∈ N . 

Example2:  . : R × R → R  is  a binary operation on R . 

Example3: ÷: Z × Z → Z is not binary operation since ∀a, b ∈ Z: ÷ (a, b) = a ÷

b ∉ Z . 

Definition: a mathematical system (mathematical structure), is a nonempty set of 

elements with one or more binary operations defined on this set.  

Example:  (N,+,.) is a math. sys., (R,.,÷) is a math. sys. (Z,.,÷) is not math. sys.,   

Question1: let S={1,-1,i,-i} s.t. i2=-1. Is (S,.) construct a math. system where (.) 

is an ordinary multiplication?  

Question2: If Ze and ZO denote the even and odd integers respectively, are 

(Ze,+,.) &(Zo,+,.) constitute mathematical system?  

Definition: The operation * defined on the set S is said to be associative if,   

(𝑎 ∗ 𝑏) ∗ 𝑐 = 𝑎 ∗ (𝑏 ∗ 𝑐)  ∶   a, b, c ∈ S. 

Example1: + is an associative operation on N,Z,Q and R. also (.). but (-) is not 

asso. operation on R. 

Example2: Let * be an operation defined on Z s.t. a ∗ b = a + b + ab ∶

  a, b ∈ Z. Show whether that * is an associative operation on Z. 

Sol. Let 𝑎, 𝑏, 𝑐 ∈ 𝑍 

(𝑎 ∗ 𝑏) ∗ 𝑐 = 𝑎 ∗ (𝑏 ∗ 𝑐)  

L.S.   (𝑎 ∗ 𝑏) ∗ 𝑐 = (𝑎 + 𝑏 + 𝑎𝑏) ∗ 𝑐 

= (𝑎 + 𝑏 + 𝑎𝑏) + 𝑐 + (𝑎 + 𝑏 + 𝑎𝑏)𝑐 

= 𝑎 + 𝑏 + 𝑎𝑏 + 𝑐 + 𝑎𝑐 + 𝑏𝑐 + 𝑎𝑏𝑐 

R.S. 𝑎 ∗ (𝑏 ∗ 𝑐) = 𝑎 ∗ (𝑏 + 𝑐 + 𝑏𝑐) 
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= 𝑎 + (𝑏 + 𝑐 + 𝑏𝑐) + 𝑎(𝑏 + 𝑐 + 𝑏𝑐) 

= 𝑎 + 𝑏 + 𝑐 + 𝑏𝑐 + 𝑎𝑏 + 𝑎𝑐 + 𝑎𝑏𝑐 

∵ L.S = R.S. 

∴ * is an ass. operation on Z 

 

Definition: A semi group is a pair (S,*) consisting of a nonempty sets together 

with an associative binary operation * defined on S.  

Example: Let Q be the rational numbers, define a ∗ b =
1

2
(a + b): a, b ∈ Q. 

prove if (Q,*) is a semi group or not? 

Solution: a ∗ b =
1

2
(a + b): a, b ∈ Q then a ∗ b ∈ Q  

∴∗ is closed 

let a, b, c ∈ Q   

a ∗ (b ∗ c) = (a ∗ b) ∗ c 

L.S./ a ∗ (b ∗ c) = a ∗ [
1

2
(b + c)] 

=
1

2
[a + [

1

2
(b + c)] =

1

2
a +

1

4
b +

1

4
c 

R.S./ (a ∗ b) ∗ c =
1

2
(a + b) ∗ c =

1

2
[

1

2
(a + b) + 𝑐] 

                                                    = 
1

4
a +

1

4
b +

1

2
c 

∵ L. S. ≠ R. S. 

∴ * is not associative  

Then (Q,*) is not semi group. 

Definition: The system (S,*) is said to have a (two- sides) identity element for 

the operation * if there exists an element e in S such that:  

a ∗ e = e ∗ a = a  for every a ∈ S 
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Example: (0) is the identity element for the systems (Z,+),(Q,+),(R,+) and (1) 

for (N,.),(Z,.),(Q,.),(R,.).  

(Ze,.) has not identity element 

Example2: Let S = {a + b√2  :    a, b ∈

Z}is the system (S, . )has an identity element?  

Sol. ∀ a + b√2  ∈ 𝑆   ∃ 𝑒1 + 𝑒2√2   ∈ 𝑆  , s.t.  

(a + b√2  )(𝑒1 + 𝑒2√2) = (𝑒1 + 𝑒2√2)(a + b√2  ) = (a + b√2  ) 

L.S. / (a + b√2  )(𝑒1 + 𝑒2√2) =  a + b√2   

a𝑒1 + 2𝑏𝑒2 + (𝑎𝑒2 + 𝑏𝑒1)√2  =  a + b√2   

a𝑒1 + 2𝑏𝑒2 = 𝑎 …  (1)     → 𝑒1 =
𝑎 − 2𝑏𝑒2

𝑎
  … (3) 

                              𝑎𝑒2 + 𝑏𝑒1 = 𝑏 …  (2) 

Substitute 3 in 2 we get 

𝑎𝑒2 +
𝑏𝑎 − 2𝑏2𝑒2

𝑎
= 𝑏 

𝑎2𝑒2 + 𝑏𝑎 − 2 𝑏2𝑒2 − 𝑏𝑎 = 0 

(𝑎2 − 2 𝑏2)𝑒2 = 0 

→ 𝑒2 = 0 

→ 𝑒1 = 0 

R.S./ Similar 

H.W. Is (Z+,.) has identity?  

Definition: Let (S,*) be a mathematical system with identity element e. An 

element a ∈ S is said to have a (two – sides) inverse under the operation * if 

there exists some number a−1 ∈ S such that:  

a ∗ a−1 = a−1 ∗ a = e 

In particular, since e*e=e we may infer that 𝑒−1 = 𝑒. 
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Example: Consider the set G={1,2,3}, and * is a function defined by the 

operation table. Find the inverse for each element? 

* 1 2 3 

1 1 2 3 

2 2 3 1 

3 3 1 2 

 

Definition: A group is a pair (G,*) consisting of a nonempty set G and a binary 

operation * defined on G, satisfying the following conditions:  

1) G is closed under the operation *.  

2) The operation *  is associative.  

3) G contains an identity element e for the operation *.  

4) Each element a of G has an inverse a−1 ∈ G  relative to *.  

Definition : The pair (G,*) is a group if and only if  (G,*) is a semi group with 

identity in which element of G has an inverse. 

Example1: (Z,+) ,(Q,+),(R,+), (Q-{0},.),  (R-{0},.) are all groups.  

  Example2: G=R/{1}, a* b=a + b – ab , show that  (G, *) is a group. 

  Sol.: 1) Since  a +  b –  ab ∈ G then a ∗ b ∈ G →
(G,∗)is a mathematical system.  

2) let a, b, c ∈ G → (a ∗ b) ∗ c = a ∗ (b ∗ c) 

L.S./ (a ∗ b) ∗ c = (a +  b –  ab ) ∗ c = (a +  b –  ab ) + c − (a +  b –  ab )c 

= a + b − ab + c − ac − bc + abc 

R.S./ a ∗ (b ∗ c) = a ∗ (b +  c –  bc ) = a + (b +  c –  bc ) − a(b +  c –  bc ) 

= a + b + c − bc − ab − ac + abc 

∴ * is an associative operation on G. 

3) a*e=e*a=a 

L. S. ) a ∗ e = a → a + e − ae = a (by cancellation law 

→ (1 − a)e = 0 → e = 0 ∈ G 

R. S. ) e ∗ a = a → e + a − ea = a (by cancellation law 
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→ e(1 − a) = 0 → e = 0 ∈ G 

∴ (G,*) has an identity element e=0. 

4) a * a-1 = a-1 * a =e 

 L. S. ) a ∗ a−1  = e → a ∗ a−1 = 0 → 𝑎 + a−1 − 𝑎a−1 = 0 

 → (1 − 𝑎)a−1 = −𝑎 

 → a−1 =
−𝑎

1−𝑎
  

 R. S. ) a−1 ∗ a = e → a−1 ∗ a = 0 → a−1 + a − a−1𝑎 = 0 

 → a−1(1 − a) = −a 

 → a−1 =
−a

1−a
  ∈ G 

∴ (G,*) is a group 

Example2: let G = {(x, y): x, y ∈ R} and ∗ defined on G as:  

∀(x, y), (a, b) ∈ G then (x, y) ∗ (a, b) = (x + a, y + b) 

Show that (G,*) is a group. 

Sol: 1) 𝑅 ≠ ∅ → 𝐺 ≠ ∅  

Let (x, y), (a, b) ∈ G 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑎, 𝑏, 𝑥, 𝑦 ∈ 𝑅 

→ (x, y) ∗ (a, b) = (x + a, y + b) ∈ G 

Since x + a, y + b ∈ R  

∴ G is a  closed  under *.  

2) let  (x, y), (a, b), (c, d) ∈ G , x, y, a, b, c, d ∈ R 

 L. S. ) [(x, y) ∗ (a, b)] ∗ (c, d) = (x + a, y + b) ∗ (c, d) = (x + (a + c), y +
(b + d)) 

             = (x + (a + c), y + (b + d)) = (x, y) ∗ (a + c, b + d) 

             = (x, y) ∗ [(a, b) ∗ (c, d)] = R. S 

∴ * is associative on G.  

3) Let  (x, y) ∈ G , x, y ∈ R  s. t.  

 (x, y) ∗ (e1, e2) = (x, y) → (x + e1, y + e2) = (x, y) 
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→ x + e1 = x  , y + e2 = y  

 → e1 = x − x   , e2 = y − y 

 →  e1 = 0, e2 = 0 

 → (e1, e2) = (0,0) ∈ G  

Similarly (e1, e2) ∗ (x, y) = (x, y) 

 ∴ (e1, e2) = (0,0) ∈ G is an identity element. 

4)let  (a, b) ∈ G , a, b ∈ R  and  

(a, b) ∗ (c, d) = (e1, e2)  

→  (a, b) ∗ (c, d) = (0,0) 

→ (a + c, b + d) = (0,0) 

→ a + c = 0 ,   b + d = 0 

                                                         → c = −a ,    d = −b 

→ (c, d) = (−a, −b) 

∴ (−a, −b) is the inverse element of (a,b). 

Then (G,*) is a group. 

Definition: If A is an arbitrary set, then the set whose elements are all the 

subsets of A is known as the power set of A and denoted by P(A): 

P(A) = {B: B ⊆ A}, P(A) = 2n.  

Note: 1) If A = ∅ → P(A) = {∅}  

2) If x ∈ A → {x} ⊆ A → {x} ∈ P(A). 

3) Since ∅ ⊆ A and A ⊆ A we always have {∅, A} ⊆ P(A). 

4) If A is a finite set with (n) elements then P(A) is itself a finite set having 2n 

elements.  

Example: Suppose the set A={1,2,3}, then P(A) 

={∅, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}}.  

Example: Suppose the set A={a,b} and Δ is a symmetric difference operation 

defined on A. Is (P(A),Δ) constitute a group? 

Δ ∅ {a} {b} {a,b} 
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 ∅ ∅ {a} {b} {a,b} 

{a} {a} ∅ {a,b} {b} 

{b} {b} {a,b} ∅ {a} 

{a,b} {a,b} {b} {a} ∅ 

H.w.  

1) prove if (P(A),∪) is a group or not? 

2) suppose that a ∈ R − {0,1} and consider the set G = {ak: k ∈ Z}. Is (G,.) 

constitute a group. 

Theorem1: Let (G,*) be a group , a ∈ G and m, n ∈ Z. the powers of a obey the 

following laws of exponents: 

1) an ∗ am = an+m = am ∗ an 

2) (an)m = anm = (am)n 

3) a−n = (an)−1 

4) en = e 

Definition: the operation * defined on the set S is called commutative if a*b=b*a 

for every pair of elements a, b ∈ S. 

Example1: Let S=Z , a*b=a+b-1 

Solution: let a, b ∈ Z S.T:  

a*b=a+b-1=b+a-1=b*a 

∴*  is a commutative.  

Example2: Let S=R/{0} , a*b = 
a

 b
 then * is not comm. operation. 

Definition: Let (G,*) be a group, if * is a commutative operation on G then (G,*) 

is called a commutative group.  

Example: (Z,+), (R,+), (Q,+), (Q/{0},.),(R/{0},.) are comm. group. 

Example2: Take the set G as consisting of the six function f1,f2,…f6, where for 

all x ∈ R − {0,1} we define f1(x) = x  , f2(x) =
1

x
 , f3(x) = 1 − x, f4(x) =

x−1

x
, f5(x) =

x

x−1
, f6(x) =

1

1−x
 

Is (G,ₒ) be a commutative group.? 

Solution:  

ₒ 

 
f1 f2 f3 f4 f5 f6 
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f1 f1 f2 f3 f4 f5 f6 

f2 f2 f1 f6 f5 f4 f3 

f3 f3 f4 f1 f2 f6 f5 

f4 f4 f3 f5 f6 f2 f1 

f5 f5 f6 f4 f3 f1 f2 

f6 f6 f5 f2 f1 f3 f4 

  

From the table:  

1) (G,ₒ) is a math. sys.  

2) ₒ is as associative operation on G.  

3) 𝑒 = f1 

4) (f1)−1 = f1, (f2)−1 = f2, (f3)−1 = f3, (f4)−1 = f6, (f5)−1 = f5, (f6)−1 = f4. 
 

∴ (G, ₒ)is a group.  
5) L. S)   (f2 ₒ f3)(𝑥) = f2[f3(x)] 

                      = f2[1 − x] =
1

1 − x
= f6(x) 

 

R. S)   (f3 ₒ f2)(x) = f3[f2(x)] 

= f3 (
1

x
) = 1 −

1

x
=

x − 1

x
= f4(x) 

∵ L. S ≠ R. S 

∴(f2 ₒ f3) ≠ (f3 ₒ f2) 

∴ ₒ is not comm. operation on G. 

∴ the group (G,ₒ) is not commutative.  

H.W). Let 𝑀 = {[
a b
c d

] , a, b, c, d ∈ R} and * define on M as: 

∀ [
a b
c d

] , [
x y
z w

] ∈ M then  

[
a b
c d

] ∗ [
x y
z w

] = [
a + x b + y
c + z d + w

] show that (M,*) is a commutative group? 

 

 

Theorem2: The identity element of a group (G,*) is unique, and each element of 

a group has inverse element. 
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Proof: Let (G,*) be a group has two identity element 𝑒1 and 𝑒2 then ∀ 𝑎 ∈ 𝐺: 

𝑎 ∗ 𝑒1 =𝑒1 ∗ 𝑎 = 𝑎 … (1) 

and  

𝑎 ∗ 𝑒2 =𝑒2 ∗ 𝑎 = 𝑎 … (2) 

Equality (1) and (2) we have  

𝑎 ∗ 𝑒1 = 𝑎 ∗ 𝑒2 → 𝑒1 = 𝑒2 

So, the identity element of a group (G,*)  is unique.  

To show that an element of a group (G,*)  has exactly  one inverse, we assume 

that 𝑎 ∈ 𝐺 such that  a has two inverse element 𝑎1
−1 𝑎𝑛𝑑 𝑎2

−1 then  

𝑎 ∗ 𝑎1
−1 = 𝑎1

−1 ∗ 𝑎 = 𝑒 … (3) 

𝑎 ∗ 𝑎2
−1 = 𝑎2

−1 ∗ 𝑎 = 𝑒 … (4) 

Equality (3) and (4) we have 

𝑎 ∗ 𝑎1
−1 = 𝑎 ∗ 𝑎2

−1 … . (5) 

Multiply  both sides of (5) from the left by 𝑎1
−1 𝑜𝑟 𝑎2

−1 we have  

(𝑎1
−1 ∗ 𝑎) ∗ 𝑎1

−1 = (𝑎1
−1 ∗ 𝑎) ∗ 𝑎2

−1 

→ 𝑒 ∗ 𝑎1
−1 = 𝑒 ∗ 𝑎2

−1 

→ 𝑎1
−1 = 𝑎2

−1 

 ∴ each element of a group (G,*) has exactly one inverse element.  

Corollary: If  (G,*) is a group then (𝑎−1)−1 = 𝑎  ∀ 𝑎 ∈ 𝐺. 

Proof: Let 𝑎 ∈ 𝐺, since (G,*) is a group then ∃ 𝑎−1 ∈ 𝐺 𝑠. 𝑡.  

𝑎 ∗ 𝑎−1 = 𝑎−1 ∗ 𝑎 = 𝑒 … (1) 

Now, since  𝑎−1 ∈ 𝐺, 𝑡ℎ𝑒𝑛 ∃ (𝑎−1)−1 ∈ 𝐺 𝑠. 𝑡. 

 𝑎−1 ∗ (𝑎−1)−1 = (𝑎−1)−1 ∗ 𝑎−1 = 𝑒 … (2) 

From (1) and (2) we have  

𝑎 ∗ 𝑎−1 =   𝑎−1 ∗ (𝑎−1)−1        

→ 𝑎−1      has  two inverse elements a and  (𝑎−1)−1  
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But from (theorem 2) each element of a group (G,*)  has exactly one inverse 

element. 

∴   (𝑎−1)−1 = 𝑎  . 

Example : let G={1,-1,i,-i} s.t. i2=-1  and (.) is a binary operation on G. find 

𝑖−1 , (−1)−1, (𝑖−1)−1, (−𝑖−1)−1  

Lemma: If  a, b, c, d ∈ G  and  (G,*) is a semi group then 

(a*b)*(c*d)=a*((b*c)*d ) 

Proof: L.S.) (a*b)*(c*d) 

Let m=c*d 

⇒(a*b)*(c*d)= (a*b)*m =a*(b*m)  [since * associative] 

=  a*((b*(c*d ))= a*((b*c)*d ). 

R.S.) a*((b*c)*d )= a*((b*(c*d )) [since * associative] 

Let m=c*d 

⇒   a*(b*m)  = (a*b)*m   [since * associative]     

 =  (a*b)*(c*d) 

∴ (a*b)*(c*d)=a*((b*c)*d )       

Theorem3: If (G,*) is a group, then (a ∗ b)−1 = b−1 ∗ a−1 ∀ a, b ∈ G . 

Proof: ⇒ clearly (𝑎 ∗ 𝑏) ∗ (𝑎 ∗ 𝑏)−1 = (𝑎 ∗ 𝑏)−1 ∗ (𝑎 ∗ 𝑏) = 𝑒 

⇦ (𝑎 ∗ 𝑏) ∗ (b−1 ∗ a−1 ) = ((𝑎 ∗ 𝑏) ∗ b−1) ∗ a−1 [𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑙𝑒𝑚𝑚𝑎] 

= (𝑎 ∗ (𝑏 ∗ b−1)) ∗ a−1 = (𝑎 ∗ 𝑒) ∗ a−1 = 𝑎 ∗ a−1 = 𝑒  

∴      (a ∗ b)−1 = b−1 ∗ a−1            

Corollary: If (G,*) is a commutative group, then (a ∗ b)−1 = a−1 ∗ b−1  ∀ a, b ∈
G .    

Proof:   Since  (G,*) is a group then   (a ∗ b)−1 = b−1 ∗ a−1  [by th.3] 

But b−1 ∗ a−1 = a−1 ∗ b−1  [* comm. operation]  

∴(a ∗ b)−1 = a−1 ∗ b−1 

H.W. Let G denotes the set of all ordered pairs of real numbers. If the binary 

operation * is defined on the set G by the rule  
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(a, b) ∗ (c, d) = (ac, bc + d) then show that (G,*) is not commutative group? 

And find  

((1,3) ∗ (2,4))−1   , (2,4)−1 ∗ (1,3)−1 

Theorem4: (Cancellation law)  

If a,b and c are elements of a group (G,*) such that either a*c=b*c or c*a=c*b 

then a=b. 

Proof:  since c ∈ G and (G,*) is a group then c−1 ∈ G exists 

Multiplying the equation  a*c=b*c both of sides from the right by c−1 we obtain  

(a*c)* c−1 =(b*c)* c−1 

Then by associative law this becomes  a*(c*c−1) =b*(c*c−1) 

⇒ a * e=b*e 

⇒ a=b 

Similarly we can show that c*a=c*b implies a=b. 

Theorem5: In a group (G,*) the equation a*x=b  and y*a=b have a unique 

solution.  

Proof: Let x = a−1 ∗ b  

∴ a ∗ (a−1 ∗ b) = b 

⇒ (a*a−1)*b = b ⇒ e *b = b ⇒ b=b 

To show the solution is unique, let 𝑥′ ∈ 𝐺 such that  𝑎 ∗ 𝑥′ = 𝑏 

⇒𝑎 ∗ 𝑥′ = 𝑎 ∗ 𝑥 [ by cancellation law] 

⇒𝑥′ = 𝑥 

Corollary : In a multiplication table for a group, each element appears exactly 

once in each row and column. 

Proof: let 𝑎, 𝑏 ∈ G and  let 𝑥1 ≠ 𝑥2 ∈ G s. t.  

𝑎 ∗ 𝑥1 = 𝑏 

𝑎 ∗ 𝑥2 = 𝑏 

∴ 𝑎 ∗ 𝑥1 = 𝑎 ∗ 𝑥2 

By theorem (5) we get 𝑥1 = 𝑥2. 
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Problems 

1) Given a,b are element of a group (G,*) with a*b=b*a show that (𝑎 ∗ 𝑏)𝑘 =
𝑎𝑘 ∗ 𝑏𝑘 𝑓𝑜𝑟  𝑘 ∈ 𝑍.  

Proof:  

If k=1  

⇒ (𝑎 ∗ 𝑏)1 = 𝑎 ∗ 𝑏 
If k=2  

⇒ (𝑎 ∗ 𝑏)2 = (𝑎 ∗ 𝑏) ∗ (𝑎 ∗ 𝑏) 

= 𝑎 ∗ 𝑎 ∗ 𝑏 ∗ 𝑏      (𝑠𝑖𝑛𝑐𝑒 𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎) 

= 𝑎2 ∗ 𝑏2  

Let k=r is true  

⇒(𝑎 ∗ 𝑏)𝑟 = 𝑎𝑟 ∗ 𝑏𝑟 

Now , we will prove when  k=r+1  

⇒ (𝑎 ∗ 𝑏)𝑟+1 = 𝑎𝑟+1 ∗ 𝑏𝑟+1 

= 𝑎𝑟 ∗ 𝑏𝑟 ∗ 𝑎 ∗ 𝑏    

= 𝑎𝑟 ∗ 𝑎 ∗ 𝑏𝑟 ∗ 𝑏        (𝑠𝑖𝑛𝑐𝑒 𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎) 

=  𝑎𝑟+1 ∗ 𝑏𝑟+1 

∴  (𝑎 ∗ 𝑏)𝑘 = 𝑎𝑘 ∗ 𝑏𝑘 

2) Given 𝑎2 = 𝑒 for every element a of the group (G,*). show that the group 

must be a commutative. 

Proof:  let 𝑎, 𝑏 ∈ 𝐺 ∋ 𝑎2 = 𝑒 , 𝑏2 = 𝑒 

𝑎2 ∗ 𝑏2 = 𝑒 ∗ 𝑒 = 𝑒 … (1) 

∵𝑎 ∈ 𝐺 , 𝑏 ∈ 𝐺 ⇒ 𝑎 ∗ 𝑏 ∈ 𝐺 (∗ is closed) 

(𝑎 ∗ 𝑏)2 = 𝑒 … (2) 

𝑓𝑟𝑜𝑚 (1)&(2)𝑤𝑒 𝑔𝑒𝑡  
𝑎2 ∗ 𝑏2 = (𝑎 ∗ 𝑏)2 

𝑎 ∗ 𝑎 ∗ 𝑏 ∗ 𝑏 = (𝑎 ∗ 𝑏) ∗ (𝑎 ∗ 𝑏) 

𝑎 ∗ (𝑎 ∗ 𝑏 ∗ 𝑏) = 𝑎 ∗ (𝑏 ∗ (𝑎 ∗ 𝑏))    (𝑏𝑦 𝑐𝑎𝑛𝑐𝑒𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑙𝑎𝑤) 

(𝑎 ∗ 𝑏) ∗ 𝑏 = (𝑏 ∗ 𝑎) ∗ 𝑏 

𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎 

∴ the group (G,*) is comm. 

 

3) Suppose that 𝐺 = {1,
−1+√3  𝑖

2
,

−1−√3  𝑖

2
 } and (.) is the ordinary multiplicative 

operation show whether that (G,.) constitutes a group or not? 

Sol.:  
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. 1 
−1 + √3  𝑖

2
 

−1 − √3  𝑖

2
 

1 1 
−1 + √3  𝑖

2
 

−1 − √3  𝑖

2
 

−1 + √3  𝑖

2
 

−1 + √3  𝑖

2
 

−1 − √3  𝑖

2
 1 

−1 − √3  𝑖

2
 

−1 − √3  𝑖

2
 1 

−1 + √3  𝑖

2
 

  

 The group of symmetries of a square  

 

The eight symmetries of the square are  

𝐺 = {R360, R90, R180, R270, H, V, D1, D2}  and (ᴏ) is an operation on G  

represents rotation or reflection. 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

⇨ (G, ᴏ) is a group but is not comm. Group. 

 

(Permutation)  or Symmetric 

ᴏ R90 R180 R270 R360 H V D1 D2 

R90 R180 R270 R360 R90 D1 D2 V H 

R180 R270 R360 R90 R180 V H D2 D1 

R270 R360 R90 R180 R270 D2 D1 H V 

R360 R90 R180 R270 R360 H V D1 D2 

H D2 V D1 H R360 R180 R270 R90 

V D1 H D2 V R180 R360 R90 R270 

D1 H D2 V D1 R90 R270 R360 R180 

D2 V D1 H D2 R270 R90 R180 R360 

a b 

c 
d 

D1 
D2 

V 

c 

H 
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Definition: Let A be a non-empty set, then every (1-1) and onto map is called 

(permutation)or symmetric on A and denoted by: 

 

symm(A) = {f: f: A 
(1 − 1)

→
(𝑜𝑛𝑡𝑜)

 A} the set of all permute  on A. 

 

 

Example: Let A={x,y} write all permute on A. 

Solution: symm(A) = {f: f: A 
(1 − 1)

→
(𝑜𝑛𝑡𝑜)

 A} 

 

symm(A) = {iA, f} = {(
x y
x y) , (

x y
y x)} 

Remark:  

1) If A is a finite set, then symm(A) is a finite.  

2) If A contains n elements (finite), then symm(A) contains n! elements. 

3) We shall written symm(A) as Sn  or Pn where A contains (n) elements.  

4) The identity element for (Pn , ᴏ) is the permutation (
1 2 … n
1 2 … n

) . 

5) The multiplicative inverse of any permutation f ∈ Sn is described by f −1 =

(
f(1) … f(n)

1 … n
). 

Example: If A={1,2,3} write all permute on A. then show (P3 , ᴏ) is a group of 

symmetric. 

Solution: Pn = P3=3!=6 

f1 = (
1 2 3
1 2 3

) , f2 = (
1 2 3
1 3 2

) , f3 = (
1 2 3
3 2 1

) , f4 = (
1 2 3
2 1 3

) , f5

= (
1 2 3
3 1 2

), 

f6 = (
1 2 3
2 3 1

) 

∴ P3 = {(
1 2 3
1 2 3

) , (
1 2 3
1 3 2

) , (
1 2 3
3 2 1

) , (
1 2 3
2 1 3

) , (
1 2 3
3 1 2

) , f6

= (
1 2 3
2 3 1

)} 

(P3 , ᴏ) is a group ? H.W 
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Definition: Let n1, n2, … , nk distinct integers between 1 and n. if a 

permutation f ∈ Sn such that:  

f(ni) = ni+1                 for    1 ≤ i < k 

f(nk) = n1              and  f(n) = n   ∀ n ∉ (n1, n2, … , nk)    
 

Then f is said to be a k- cycle or a cycle of length k. 

 

In the symmetric group (P5 , ᴏ)  

 

(
1 2 3 4 5
1 5 2 4 3

) = (2 5 3)         3 − cycle 

also 

(
1 2 3 4 5
4 1 2 3 5

) = (1 4 3 2)         4 − cycle 

 

 The cycles can be multiplied by the functional composition operation thus 

in (P5 , ᴏ)we have  

(2 5 3) ᴏ (1 2 4 3) = (
1 2 3 4 5
1 5 2 4 3

) ᴏ (
1 2 3 4 5
2 4 1 3 5

) 

= (
1 2 3 4 5
5 4 1 2 3

)  

f(1)=5  , f 2(1) = f(f(1)) = f(5) = 3 

 

f 3(1) = f(f 2(1)) = f(3) = 1 

Find f 2(2). 

Definition : the simplest of permutation are 2 − cycle this called transposition.  

1 − cycle → Identity permutation.  

Corollary: every permutation may be expressed as the product of transpositions 

that is:  

(1,2,…,k0=(1k)(1k-1)…(12) 

Example: f = (1 2 4 3) = (13)(14)(12) 

Note: A permutation of a finite set is even or odd a according to weather it can 

be expressed as a product of an even number of transposition or the product of 

an odd number of transposition. 

Example: (123)=(13)(12)  even 
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Definition : A group (G,*) is said to be cyclic if there exists an element 𝑎 ∈ 𝐺 

such that every element of G is of the form ak for some integer k.  

Such that an element a is called a generator of the group. The cyclic group G is 

denoted by G=(a). that is  

G = {ak ∶ k ∈ Z} 

Note: if the binary operation is (+) then the cyclic group is written by G = {ka ∶
k ∈ Z}. 

Example1: (Z,+) is a cyclic group generated by 1 &-1.  that is 

Z = {k(1): k ∈ Z}   & Z = {k(−1): k ∈ Z}. 

 

Example 2:  let G={1,-1,I,-i} and (.) is an ordinary multiplicative operation. 

Show that (G,.) is a cyclic group? 

Solution: (G,.) is a group  

(G,.) is a cyclic group generated by  I &-i 

The Group Of Integers Modulo n : 

Definition: let n be a fixed positive integer. Two integers a and b are said to be 

congruent modn, written: a ≡ b (modn) if and only if the difference (a-b) is 

divisible by n. that is  

a ≡ b(modn) ↔ a − b = kn for some k ∈ Z 

For example, if n=7 we have  3 ≡ 24(mod7) → 3 − 24 = 7k for some k ∈ Z 

→ 𝑘 =
−21

7
= −3 

Example2: 10 ≢ 4(mod5) since 10 − 4 ≠ 5k for some k ∈ Z 

Note/if a-b is not divisible by n we say that a is in congruent to b modulo n and 

in this case, write a ≢ b(modn) 

 Definition: Division algorithm  

Let a and b be integers with b>0 then there exist unique integers q and r with 

property that a=bq+r  where  0 ≤ r < b. 

If b/a then r=0 that is a=bq. 

Example:  let a=19 & b=5 then 19=5(3)+4       0 ≤ 4 < 5 
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Theorem6: let n be a fixed positive integer and a,b be arbitrary integers. Then 

a ≡ b (modn) iff a  and  b have the same remainder when divided by n.  

Proof: suppose that a ≡ b (modn) 

⇨ a=b+kn for some integer k. 

On division by n,b leaves a certain remainder r :  

b=qn+r  where  0 ≤ r < n  , q ∈ Z. 

thus   a=b+kn = (qn+r)+kn 

                          =(q+k)n+r   

Which shows a has the same remainder as b. 

Conversely: 

Let a = q1n + r and  b = q2n + r with the same remainder 0 ≤ r < n. 

Then  

a − b = (q1n + r ) − (q2n + r) = (q1 − q2)n  with (q1 − q2) ∈ 𝑍 

Hence, n is a factor of a-b and so a ≡ b (modn) 

Theorem7: let n be a fixed positive integer and a,b,c arbitrary integers. Then  

1) a ≡ a (modn) 

2) if a ≡ b (modn) then b ≡ a (modn) 

3) if a ≡ b (modn) and b ≡ c (modn) then a ≡ c (modn). 

4) if a ≡ b (modn) and c ≡ d (modn) then a + c ≡ b + d (modn), 𝑎c ≡
bd (modn) 

5) if a ≡ b (modn), then , 𝑎c ≡ bc (modn). 

6) if a ≡ b (modn), then a𝑘 ≡ b𝑘 (modn) for every positive integer k. 

proof(1): for any integer a, since a-a=0.n   0 ∈ Z 

⇨ a ≡ a (modn) 

Proof(2): if a ≡ b (modn) then a-b=kn, k ∈ Z 

⇨ a-b=kn  ] (-1) 

⇨ - (a-b)=-kn   

⇨ - (a+b)=(-k)n   

⇨  b-a =(-k)n  where −k ∈ Z 



[Group of Algebra] [2019-2020] 

 

 19 

       ⇨ b ≡ a (modn) 

Proof(3): if a ≡ b (modn) and b ≡ c (modn) then a-b=kn and b-c=hn, for 

some k, h ∈ Z 

⇨ a-b=kn … (1) 

    b-c=hn …(2) 

    a-c= kn+hn 

⇨ a-c =(k+h)n , (k + h) ∈ Z 

⇨ a ≡ c (modn) 

Proof(4): if a ≡ b (modn) and c ≡ d (modn) then  a − b = k1n & c − d =
k2n  for some integers  k1, k2 ∈ Z . 

Now (a+c)-(b+d)= (a-b)+(c-d) 

= k1n + k2n = (k1 + k2)n     , (k1 + k2) ∈ Z 

       ⇨(a+c)-(b+d)= (k1 + k2)n      

      ⇨ (a + c) ≡ (b + d) (modn) 

Also/ ac = (b + k1n)(d + k2n) 

= bd + (bk2 + dk1 + k1k2n)n 

Since (bk2 + dk1 + k1k2n) is integer  

∴ ac = bd + k3n     where  k3 = bk2 + dk1 + k1k2n  

⇨ ac = bd = k3n 

⇨ 𝑎c ≡ bd (modn). 

Proof(5): if a ≡ b (modn) then a-b=kn, k ∈ Z 

and c ≡ c (modn) for 0 ∈ Z then ac - bc=(a-b)c 

= knc  

= (kc)n , kc ∈ Z  

∴  ac ≡ bc (modn). 

Proof(6): we prove (6) by inductive argument  

Since a ≡ b (modn) ⇨ a1 ≡ b1 (modn) 
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⇨ the statement true for k=1. 

Assuming it holds for an arbitrary k, we must show that it also holds for k+1.  

Since ak ≡ bk (modn) and a ≡ b (modn) from (4) 

⇨ aka ≡ bk b(modn) 

⇨ ak+1 ≡ bk+1 (modn) 

∴ ak ≡ bk (modn)     , k ∈ Z+. 

 

Definition: Congruence class  

Let a ∈ Z the set of all integers congruent to a module n is denoted by [a] where  

[a] = {x ∈ Z: x ≡ a (modn)} 

                                                                   [a] = {x ∈ Z: x ≡ a + kn, k ∈ Z} 

[a] is called the congruence class of a.  

Example: suppose that we are dealing with congruence modulo 3. Then find [0], 

[1], [-7]. 

Solution:  

[0] = {x ∈ Z: x ≡ 0 (mod3)} 

                                                                          = {𝑥 ∈ 𝑍: 𝑥 = 3𝑘 ,   𝑘 ∈ 𝑍} 

                                                                          = {… , −9, −6, −3,0,3,6,9, . . } 

 

Theorem 8: Let n ∈ N then there is n of equivalent classes.  

i.e. there is [0], [1], [2],…,[n-1] of equivalent classes.  

Note: the set of all congruence classes is denoted by Zn where  

Zn= {[0], [1], [2],…,[n-1]}  

For example, if n=4 then Z4= {[0], [1], [2],[3]} s.t.  

[0] = {… , −8, −4,0,4,8,12, . . } 

find [1], [2], [3] 
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Theorem 9: Len n be a positive integer and Zn be defined as Zn= {[0], [1], 

[2],…,[n-1]},  

then: 

1) For each [a] ∈ Zn , [a] ≠ ∅. 

2) If [a] ∈ Zn and [b] ∈ Zn, then  [a] = [b] that is, any element of the 

congruence class [a] determines the class. 

3) For any [a], [b] ∈ Zn where [a] ≠ [b] then [a] ∩ [b] = ∅. 
4) ∪ {[a]: a ∈ Z} = Z. 

Definition: A binary operation (+n)  may be defined on Zn as follows:  

For each [a], [b] ∈ Zn  ⇒ [a]+𝑛 [b] = [a + b] 

Theorem10: For each positive integer n, the mathematical system (Zn, +n) 

forms a commutative group, known is the (group of integers module n). 

Proof: let [a], [b] ∈ Zn  

1) [a]+n [b] = [a + b] ∈ Zn  

∴ (Zn , +n) is a mathematical system  

2) [a]+n([b]+n [c]) = [a]+n([b + c] 

= [a + (b + c)] = [(a + b) + c] 

= [a + b]+n[c] = ([a]+n[b]+n[c] 

∴ +n is associative operation on Zn. 

3) ∀ [a] ∈ Zn, ∃ [0] ∈ Zn s. t. 
[a]+n[0] = [a + 0] = [a] = [0 + a] = [0]+n[a]  
∴[0] is the identity element of +n 

4) If [a] ∈ Zn , then [n − a] ∈ Zn and [a] +n[n − a] = [𝑎 + +(𝑛 − 𝑎)] =
[𝑛] = [0] 
So that [𝑎]−1 = [𝑛 − 𝑎] 

5) [a]+n[b] = [a + b] = [b + a] = [b]+n[a] 
∴ (Zn , +n) is a commutative group.  

Example: show that  (Z4 , +4) is a comm. group.  

Note: for simplicity, it is convenient remove the brackets in the designation of 

the congruence classes of Zn. thus we often write Zn = {{0,1,2, … , 𝑛 − 1} 

H.W./ Let G = {(a, b): (a, bn) ∈ Z2}show that (G, +)is a group? 

Subgroups 
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Definition: Let (G,*) be a group and ∅ ≠ H ⊆ G. The pair (H,*) is said to be a 

subgroup of (G,*) if (H,*) is itself a group.  

Example1: If Ze and Zo denote  the sets of even and odd integers respectively 

then ( Ze,+) is a subgroup of the group (Z,+) while (Zo,+) is not.  

Example2: consider (Z6 , +6) the group of integers modulo 6. If H={0,2,4} then 

(H, +6) 𝑖𝑠 a subgroup of (Z6 , +6).  

Note: each group (G,*) has at least two subgroups ({e},*) and (G,*), these 

subgroups are known trivial subgroup and any subgroup different from these 

subgroup known proper subgroup.  

Theorem11: Let (G,*) be a group and ∅ ≠ H ⊆ G then (H,*) is a subgroup of 

(G,*) iff a, b ∈ H implies a ∗ b−1 ∈ H.  

Proof: ⇒) Let (H,*) is a subgroup of (G,*) we have prove a ∗ b−1 ∈ H  

Let a, b ∈ H then a, b−1 ∈ H  

⇒ a ∗ b−1 ∈ H ( since ∗ closure)  

⇦) Let  a ∗ b−1 ∈ H then  

1) The operation * in H is a associative binary operation because H subset of 

G.  

2) Let a, b ∈ H ⇨ a ∗ b−1 ∈ H 

If a=b ⇨ b ∗ b−1 ∈ H ⇨ e ∈ H 

3) ∵ b ∈ H and e ∈ H ⇨ e ∗ b−1 ∈ H ⇨ b−1 ∈ H  

4) Let a ∈ H and ∵  b−1 ∈ H ⇨ a ∗ (b−1)−1 ∈ H ⇨ a ∗ b ∈ H  

 

∴ (H,*) is a subgroup of (G,*). 

Example: (Z12, +12) is a group let H={0,4,8}  then (H, +12) is a subgroup of  

(Z12, +12) according (theorem11) since:: 

(𝟎)−𝟏 = 𝟎     , (𝟒)−𝟏 = 𝟖,   (𝟖)−𝟏 = 𝟒 

0* (4)−1 = 0 +128= 8 ∈ H  

0* (8)−1 = 0 +124= 4 ∈ H  

⋮ 

That is a, b ∈ H a+12 b−1 ∈ H 

Center of a group  
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Definition : let (G,*) be a group the center of G is the center(G) and denoted by 

cent (G) s.t. : 

cent(G) = {   c ∈ G: c ∗ x = x ∗ c, ∀ x ∈ G} 

Note: cent(G) ≠ ∅ since ∃ e ∈ G s. t.  

e ∗ x = x ∗ e, ∀ x ∈ G → e ∈ cent(G) 

Theorem 12:  Let (G,*) be a group then cent (G)=G iff G is  a comm. group . 

 

 

Theorem 13:  let (G,*) be a group then (cent(G),*) is a subgroup of (G,*).  

Proof:  cent(G) ≠ ∅ since e ∈ cent(G)  

Let a, b ∈   cent(G)  

∴ a*x = x*a ,  b*x = x*b   ∀ x ∈ G [ by definition of cent(G)]  

(a* b−1) ∗ x = a ∗ ( b−1 ∗ x)    (∗ is a sso. ) 

= a* (x−1 ∗ b)−1      from theorem (a ∗ b)−1 = b−1 ∗ a−1 

= a  * (b ∗ x−1)−1      ( since b ∈ cent(G)) 

= (a*x)* b−1    (∗ is a sso. ) 

=(x*a)* b−1 ( since a ∈ cent(G)) 

= x * (a*b−1)     (∗ is a sso. ) 

∴ a*b−1 ∈ cent(G) 

∴ (cent(G),*) is a subgroup of (G,*). 

Theorem 14: If (Hi, *) is the collection of subgroups of (G,*) then (∩ Hi,∗) is 

also subgroup of G. 

Proof: 1)  ∩ Hi ≠ ∅ since∃ e ∈ Hi  , ∀i 

⇨ e ∈ ∩ Hi 

2) let x, y ∈ ∩ Hi ⇨ x, y ∈ Hi , ∀i  

⇨ x ∗ y−1 ∈ Hi , ∀i ( since Hi subgroups)  

⇨ x ∗ y−1 ∈ ∩ Hi 
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⇨(∩ Hi,∗) is also subgroup of G. 

 Example: (Z15, +15) is a group and H1 = {0,3,6,9,12}, H2 = {0,5,10} are 

subgroups of  Z15  then  

H1 ∩ H2 = {0}  → (H1 ∩ H2, +15) is subgroups of  Z15 

H1 ∪ H2 = {0,3,5,6,9,10,12}  

(H1 ∪ H2, +15) is  not subgroups of  Z15 

Theorem15: Let (H1,∗) and (H2,∗) are two subgroups  of (G,* ). Then (H1 ∪
H2,∗) is a subgroup of (G,* ) if and only if   H1 ⊆ H2 or H2 ⊆ H1. 

Proof: ⇒) Let H1 ⊆ H2 and let a, b ∈ H1 

∴ a ∗ b−1 ∈ H1 (since (H1,∗) is a subgroup)  

∴ a ∗ b−1 ∈ H1 (since H1 ⊆ H2) 

Similarly if H2 ⊆ H1 

⇨ a ∗ b−1 ∈ H1 ∪ H2 

⇐) Let (H1 ∪ H2,∗) is a subgroup and let    H1 ⊈  H2  or  H2 ⊈  H1  

Let a ∈ H1 and a ∉ H2 (a ∈ H1 − H2) 

 b ∈ H2 and b ∉ H1 (b ∈ H2 − H1) 

Now let  a ∗ b ∈ H1 (since (H1,∗) is a subgroup)  

∴ a−1 * (a*b) ∈ H1  

(a−1 * a )* b∈ H1 

e * b ∈ H1 → b ∈  H1  C! 

also a ∗ b ∈ H2 (since (H2,∗) is a subgroup) 

∴  (a* b) ∗ b−1) ∈ H2 → a ∈  H2  C! 

∴  H1 ⊆ H2 or H2 ⊆ H1 

 Example: (Z,+) is a group , ((2),+) and ((4),+) are subgroups of the group (Z,+).  

Since ((4),+) ⊆  ((2),+) then  (by the. 15) ((2) ∪ (4), +) = ((2), +) is subgroup 

of the group (Z,+).  

Definition:  If (G,*) is a group and a ∈ G write (a) = {ak ∶ k ∈ Z}, then 

((a),*) is called the cyclic subgroup of the group (G,*) generated by a.  
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Example1:  (Z,+) is a group and (2) = {2k ∶ k ∈ Z} 

⇨ (2)={ …, -4,-2,0,2,4,6,…} 

Then ((2),+) is a cyclic subgroup of (Z,+). 

Example2: (Z12,+12)  is a group ,  

(3) = {3k mod 12  , k ∈ Z} 

={0,3,6,9} thus ((3),+12)  is a cyclic subgroup of (Z12,+12) . 

Example3: the group of symmetries of the square is not cyclic but the subgroup:  

(R90)= { R90, R180, R270, R360} is cyclic generated by the element R90.  

Theorem16: If ((a),*) is a finite cyclic group of order n then (a)={e,a,a2,…, an-

1}. 

Example: (Z15,+15) is a group  

(5)= { 5k , k ∈ Z} 

={5k : k ∈ Z} 

={0,51,52} 

={0,5,10}  

⇨((5), +15) is a cyclic group.  

Theorem17: Every subgroup of a cyclic group is a cyclic.  

Example: (Z,+) is a cyclic group generated by 1, -1 so Z=(1)=(-1)  

Then by the theorem 16  ((4),+) is a cyclic subgroup of (Z,+) also ((2),+), ((3),+) 

and in general ((n),+) is a cyclic subgroup of (Z,+)where n ∈ Z+  ∪ {0} . 

Definition: let (G,*) be a group and (H,*), (K,*) are two subgroups of G then the 

product of H and K is the set  H ∗ K = {h ∗ k: h ∈ H, k ∈ K}. 

Remark:  

1) H*H= H2  

2) If H={a} then H*K=a*K, if K={b} then H*K= H*b. 

3) H*K⊆G 

4) H ∪ K⊆ H*K. 

Example: In the group  of symmetries of the square,  consider the subgroups 

H={R360, D1} and K={R360,V} then  



[Group of Algebra] [2019-2020] 

 

 26 

H*K=  { R360  ᴏ R360 , R360 ᴏV, D1 ᴏ R360, D1 ᴏ V }  

= { R360,V, D1 , R270}  

(H*K, ᴏ) is not subgroup of G. 

Theorem18: Let (G,*) be a group and (H,*), (K,*) are two subgroup of (G,*) 

then (H*K, *) is  

 a subgroup of  (G,*) iff H*K= K*H. 

Proof: suppose (H*K, *) is a subgroup of  (G,*) 

to prove H*K= K*H we should prove  H*K⊆ K*H and K*H ⊆ H*K  

let x ∈ H ∗ K ⇒ x = a ∗ b ∋ a ∈ H, b ∈ K 

∵ H ∗ K is a subgroup of G.  

⇒ x−1 ∈ H ∗ K 

x−1 = c ∗ d ∋ c ∈ H ˄ d ∈ K 

x = (x−1)−1 = (c ∗ d)−1 =  d−1 ∗ c−1  ∋  d−1 ∈ K˄ c−1 ∈ H 

x =  d−1 ∗ c−1 ∈ K ∗ H 

∴ H*K  ⊆ K*H 

Let  y ∈ K ∗ H ⇒ y = f ∗ g ∋ f ∈ K, g ∈ H 

∵ K ∗ H is a subgroup of G.  

⇒ y−1 ∈ K ∗ H  

y−1 = h ∗ l ∋ h ∈ K ˄ l ∈ H 

y = (y−1)−1 = (h ∗ l)−1 =  l−1 ∗ h−1  ∋  l−1 ∈ H ˄ h−1 ∈ K 

y =  l−1 ∗ h−1 ∈ H ∗ K 

⇒ H*K= K*H 

Conversely:  let H*K= K*H  

1) H*K≠ ∅ since e=e*e ∈ H ∗ K 

Also H*K ⊆ G 

Now , let x,y ∈ H ∗ K  , T. P. x ∗ y−1 ∈ H ∗ K   

x ∈ H ∗ K  ⇒ x=a*b ∋ a ∈ H ˄ b ∈ K  
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y ∈ H ∗ K  ⇒ y=c*d ∋ c ∈ H ˄ d ∈ K  

x ∗ y−1 = (a ∗ b) ∗ (c ∗ d)−1 = (a ∗ b) ∗ (d−1 ∗ c−1) 

= a* (b*d−1) ∗ c−1 

∵(H,*), (K,*) are two subgroup of (G,*) ⇒ b*d−1  ∈ K & c−1 ∈ H 

∴(b*d−1) ∗ c−1 ∈  K ∗ H 

But H*K= K*H 

Then  (b*d−1) ∗ c−1 ∈ H*K  ⇒∃  𝑝 ∈ 𝐻 , 𝑞 ∈ 𝐾  ∋ (b ∗ d−1) ∗ c−1 = 𝑝 ∗ 𝑞 

Now,  a* (b*d−1) ∗ c−1 = (𝑎 ∗ 𝑝) ∗ 𝑞 ∈ 𝐻 ∗ 𝐾 

∴ x ∗ y−1 ∈ H ∗ K   

∴ (H*K, *) is a subgroup of  (G,*). 

Example: (Z12,+12) is a comm. Group, H={0,6} and K={0,4,8}  such that 

(H,+12)and (K,+12) are subgroups of (Z12,+12) show that (H*K, +12) is a subgroup 

of (Z12,+12). 

H+12K={0,2,4,6,8,10}  

∴(H*K, +12) is a subgroup of (Z12,+12). 

Definition:  Let (H,*) be a subgroup of the group (G,*) and let a ∈ G then the set 

a ∗ H = {a ∗ h: h ∈ H} is called a left coset of H in G and H ∗ a = {h ∗ a: h ∈ H} 

is called right coset of H in G and a representative a ∗ H and H ∗ a. 

If the group (G,*) is commutative then a ∗ H = H ∗ a. 

Example: let (Z10,+10)  be a group  and H={0,5} be a subgroup of (Z10,+10)   find 

all cosets of H in Z10.  

Theorm19: let (H,*) be a subgroup of (G,*) and  a ∈ G then : 

1) H is itself left coset of H in G.  

Proof:  since e ∈ G  

⇒e ∗ H = {e ∗ h: h ∈ H}=H 

2) IF ( (G,*) is a belian group then  

a*H=H*a 

proof: a ∗ H = {a ∗ h: h ∈ H} = {h ∗ a: h ∈ H} = H ∗ a 

the converse is not true.  
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Example: (S3, ᴏ) , H={f1,f5,f6} , a = f4 

f4 ᴏ H= {  f4, f2, f3} , H ᴏ f4={f4, f2, f3} 

⇒ f4 ᴏ H= H ᴏ f4 

but (S3, ᴏ) is not a belain group 

3) a∈ a ∗ H 

Proof: since e∈ H 

⇒ a=a*e∈ a ∗ H 

Theorem20: If (H,*) is a subgroup of the group (G,*) then a*H=H if and only if 

a ∈ H. 

Proof: suppose that (H,*) is a subgroup of the group (G,*) such that a*H=H 

since e ∈ H and for every a ∈ G we have  a = a ∗ e ∈ a ∗ H . 

But a*H=H hence a ∈ H. 

Conversely:  Let a ∈ H to prove that  a*H=H. 

Let x∈ a*H⇒ x=a*h for some h ∈ H 

Since a ∈ H and h ∈ H ⇒ a ∗ h ∈ H {(H,*) is a subgroup} 

Hence  x ∈ H  

∴ a ∗ H ⊆ H … (1) 

Now, Let h ∈ H ⇒h = e ∗ h = (a ∗ a−1) ∗ h = a ∗ (a−1 ∗ h) 

Since a ∈ H ⇒ a−1 ∈ H    {(H,*) is a subgroup} 

⇒a−1 ∗ h ∈ H     

Then a ∗ (a−1 ∗ h) ∈ a ∗ H 

Hence h ∈ a ∗ H 

∴H ⊆ a*H … (2) 

From (1) & (2) we have a*H=H. 

Theorem21: If  (H,*) is a subgroup of the group (G,*) then a*H=b*H if and 

only if a−1 ∗ b ∈ H.  

Proof :  Let a*H=b*H then we have to prove a−1 ∗ b ∈ H that mean  

∃ h1, h2 ∈ H 
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 ⇒a ∗ h1 = b ∗ h2 

⇒ (a−1 ∗ a) ∗ h1 = (a−1 ∗ b) ∗ h2 

⇒h1 = a−1 ∗ b ∗ h2 

⇒h1 ∗ h2
−1  = a−1 ∗ b ∗ (h2 ∗ h2

−1) 

⇒h1 ∗ h2
−1  = a−1 ∗ b 

⇒h1 ∗ h2
−1 ∈ H 

Conversely:  Let a−1 ∗ b ∈ H we have to prove that a*H=b*H  

⇒ a−1 ∗ b ∗ H = H      (By theorem 20) 

⇒ let h3, h4 ∈ H 

⇒ a−1 ∗ b ∗ h3 = h4 

⇒  (a ∗ a−1) ∗ b ∗ h3 = a ∗ h4 

⇒ b ∗ h3 = a ∗ h4 

⇒ b ∗ H = a ∗ H 

Theorem22:  

If (H,*) is a subgroup of the group (G,*) then left(right) cosets of H in G form a 

partition of the set G. 

Example: consider (Z12,+12) the group of integer modulo 12. If we take 

H={0,4,8}, Then (H, +12) is a subgroup of (Z12,+12) the left cosets of H in Z12 are  

0+12 H = H = 4+12 H = 8+12 H 

1+12 H = {1,5,9} = 5+12 H = 9+12 H 

2+12 H = {2,6,10} = 6+12 H = 10+12 H 

3+12 H = {3,7,11} = 7+12 H = 11+12 H 

H ∪ 1+12 H ∪ 2+12 H ∪ 3+12 H = 𝑍12 

Also  
H ∩ 1+12 H ∩ 2+12 H ∩ 3+12 H = ∅ 

 

Thus the left (cosets) of H in 𝑍12 form a partition of the set 𝑍12. 



[Group of Algebra] [2019-2020] 

 

 30 

  

Definition : If (H,*) is a subgroup of (G,*) the index of H is the number of coset 

(left or right) of H in G which is denoted by r.  

Definition : the number of elements in a group (G,*) is called the order of G. 

Theorem23:  (Lagrang  theorem) 

The order and index of any of any subgroup of a finite group divides the order of 

the group. 

That is order (G)=index(H). order(H)  

Or       o(G)=o(H).r 

Proof: suppose G be a finite group ∋    o(G) = n  and H  be a subgroup of G ∋
   o(H) = m  . 

Let r is the index of H in G  

Let a1 ∗ H, a2 ∗ H, … , ar ∗ H are left cosets of H. 

a1 ∗ H ∪ a2 ∗ H ∪ … ∪ ar ∗ H = G 

and  
a1 ∗ H ∩ a2 ∗ H ∩ … ∩ ar ∗ H = ∅ 

 
 o(a1 ∗ H) + o(a2 ∗ H) + ⋯ + o(ar ∗ H) = o(G) 

m + m + ⋯ + m = n 

⇒ rm = n 

         ⇒ r.o(H)=o(G) 

Example: let G={1,-1,i,-i} , (G,.) is a group and H={1,-1} where  (H,.) is a 

subgroup of  (G,.). The left cosets of H are  

1.H={1,-1}=H 

-1.H={-1,1}=H 

i.H={i,-i} 

-i.H={i,-i} 

∴ the distinct left cosets of H are {1.H, i.H} 

∴index H=2 and by Lagrange’s theorem  
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 o(G)=o(H).r 

r =
o(G)

o(H)
=

4

2
= 2 

Definition:  A subgroup (H,*) of the group (G,*) is said to be normal (or 

invariant) in (G,*)iff every left coset of H in G is also a right coset of H in G that 

is a*H=H*a for every a ∈ G. 

Example: The subgroup ((4),+12) is normal in Z12 since:  

Left H=(4)={0,4,8} 

0+12 H = H   , H+120 = H 

1+12 H = {1,5,9},   H+12 1 = {1,5,9} 

2+12 H = {2,6,10} ,   H+12 2 = {2,6,10} 

⋮ 

∴ a+12 H = H+12 a                for every a ∈ H 

Remarks:  

1) Every subgroup of a commutative group is normal. 

2) We denote for any normal subgroup (H,*) of (G,*) by H∆G. 

3) {e}∆G. 

4) cent(G)∆G. 

Definition: If (H,*) is a normal subgroup of the group (G,*) then we shall denote 

the collection of distinct cosets of H in G by G/H:  

G/H = {a ∗ H: a ∈ G} 

A rule of composition ⊗ may be defined on G/H by the formula 

 (a*H) ⊗ (b*H)=(a*b)*H    ∀a, b ∈ G  

∴ (G/H,⊗) is called quotient group of G by H. 

Theorem 24: let H∆G. then (G/H,⊗) is quotient group. 

Proof: 1) ∀ a, b ∈ G s. t:  

(a*H) &(b*H) ∈  G/H  

Then (a*H) ⊗ (b*H)=(a*b)*H ∈  G/H      

Since a ∗ b ∈ G   [(G,∗)is a group]  
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∴ (G/H,⊗) is a mathematical system. 

2) Let a, b, c ∈ G  s. t. ∶ 
[(a ∗ H) ⊗ (b ∗ H)] ⊗ (c ∗ H) = (a ∗ H) ⊗ [(b ∗ H) ⊗ (c ∗ H)] 

((a ∗ b) ∗ H) ⊗ (c ∗ H) = (a ∗ (b ∗ c)) ∗ H = (a ∗ H) ⊗ ((b ∗ c) ∗ H) 

= (a ∗ H) ⊗ ((b ∗ H) ∗ (c ∗ H)) 

 

∴⊗ is associative operation on G/H. 

3) Identity e*H=H ∈  G/H   ∀  a ∗ H ∈  G/H     
(a ∗ H) ⊗ (e ∗ H) = (a ∗ e) ∗ H = a ∗ H 

(e ∗ H) ⊗ (a ∗ H) = (e ∗ a) ∗ H = a ∗ H 

4) ∀ a ∗ H ∈  G/H  ∃ a−1 ∗ H ∈ G/H   
 

(a ∗ H) ⊗ (a−1 ∗ H) = (a ∗ a−1) ∗ H = e ∗ H = H 

(a−1 ∗ H) ⊗ (a ∗ H) = (a−1 ∗ a) ∗ H = e ∗ H = H 

 

∴ (G/H,⊗) is quotient group 

Example:  Let (Z6 ,+6) and H={0,3} find Z6/H? then prove (Z6/H, ⊗) is a 

quotient group. 

Sol./ Z6/H={H,1+H, 2+H} 

 

⊗ H 1+H 2+H 

H H 1+H 2+H 

1+H 1+H 2+H H 

2+H 2+H H 1+H 

Homomorphism 

Definition: Let (G,*) and (G’,ᴏ) be two groups and f is a function from G into 

G’ i.e f: G → G′ then f is said to be a homomorphism from (G,*) into (G’,ᴏ) if 

and only if  

f(a*b)=f(a) ᴏ f(b) 

where a, b ∈ G 

Example1: Define the function f: (R, +) → (R − {0}, . ) by f(a) = 2a  ∀a ∈ R 

Is f homo.?  

Sol./ f(a + b) = 2a+b 

= 2a. 2b 

= f(a). f(b) 

⇒ f is homo.  
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Example2: Define the function f: (Z, +) → (Z, +) by  f(x)=x  ∀x ∈ Z, is f 

homo.? 

Sol.: L.s/  f(x+y)=x+y=f(x)+f(y) 

⇒ f is homo.  

Example3: Define the function f: (R+, . ) → (R, +) by  f(x)=𝑒𝑥  ∀x ∈ R+, is f 

homo 

Sol.: let  x, y ∈ R+ 

⇒ f(x+y)=𝑒𝑥.𝑦 

≠ ex + ey 

≠ f(x) + f(y) 

              ∴ f is not homo. 

Example4:  Suppose that  (G,*) and (G’,ᴏ) are two subgroups with identity 

elements e and e’ respectively. The function  f: G → G′ given by f(a)=e’ for each 

∀a ∈ G is a homo.  

f(a*b)=e’=e’ ᴏ e’=f(a) ᴏ f(b) 

∴ f is trivial homo. 

Example5:  let f: (G,∗) → (G,∗) defined by f(a)=x*a*x-1  ∀a ∈ G, prove that f is 

a homo.  

Sol. Let a, b ∈ G then  

L.S./ f(a*b)= x*(a*b)* x-1   

R.S/ f(a)*f(b)=(x*a*x-1)*(x*b*x-1) 

=  x*a*(x-1*x)*b*x-1 

=x*(a*b*) x-1 

∴ f is a homo. 

H.w. In the following situations determine whether the indicated function f is 

homo. from the first group into the second group. 

a) f(a)=-a  ,   f: (R, +) → (R, +). 

b) f(a)=|𝑎|  , f: (R − {0}, . ) → (R+, . ). 
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c) f(a)=a + 1  , f: (Z, +) → (Z, +). 

d) f(a)= a2  , f: (R − {0}, . ) → (R+, . ). 

e) f(a)=na   (n a fixed integer) , f: (Z, +) → (Z, +).  

Theorem25: If f is a homo. from the group (G,*) into the group (G’,ᴏ) then : 

1) f(e)=e’ where e’ is an identity element of G’. 

2) f(a−1) = (f(a))−1       ∀a ∈ G. 

 Theorem 26: Let f be a homo. From the group (G,*) into the group (G′,ᴏ) then : 

1) For each subgroup (H,*) of (G,*) the pair (f(H), ᴏ) is a subgroup of (G′,ᴏ). 

2) For each subgroup (H′,ᴏ) of (G′,ᴏ) the pair ((f(H′))−1, *) is a subgroup of 

(G,*). 

Proof: 1) f(H) ≠ ∅ since f(e) = 𝑒′  ∈ f(H)  

Let f(a),f(b) ∈ f(H) 

f(a) ᴏ (f(b))−1= f(a) ᴏ f(b−1)  

= f(a*b−1)  ∈ f(H) 

∴ (f(H), ᴏ) is a subgroup of (G′,ᴏ). 

Proof: 2) (f(H′))−1 ≠ ∅ since  𝑒  ∈ (f(H′))−1 

Let a, b  ∈ (f(H′))−1    ∋ f(a), f(b) ∈ H′    

f(a*b−1) = f(a) ᴏ f(b−1) 

= f(a) ᴏ (f(b))−1 ∈  H′  

∴ f(a*b−1)  ∈  H′ ⇒ a*b−1 ∈ (f(H′))−1 

∴((f(H′))−1, *) is a subgroup of (G,*). 
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Definition: Let f be a homomorphism from the group (G,*) into the group  

(G′,ᴏ) and let e′ be the identity element of (G′,ᴏ). The kernel of  f denoted by 

ker(f)  is the set:  

ker(f) = {a ∈ G: f(a) = e′} 

Example1:  consider the function:  

f: (Z, +) → ({1, , −1, I, −I}, . ) defined by f(n) = in   for n ∈ Z, find ker(f). 

sol:/ f(n1 + n2) = in1+n2 

=in1 . in2 = f(n1). f(n2)  

∴ f is a homo. 

To find the kernel, we have  

ker(f) = {n ∈ Z: f(n) = e′} 

= {n ∈ Z: f(n) = 1} 

= {n ∈ Z: in = 1} 

= {… , −8, −4,0,4,8, … } 

 

Example2:  Let  f: (R, +) → (R − {0}, . ) is a homo. and defined by                

f(a) = 2a   for a ∈ R, find ker(f). 

Sol:/ 
ker(f) = {a ∈ R: f(a) = e′} 

= {a ∈ R: f(a) = 1} 

= {a ∈ R: 2a = 1} 

= {a ∈ R: 2a = 20} = {0} 

Example3:  Let  f: (Z, +) → ({1, −1}, . ) such that: 

f(a) = {
1     if a is even
−1 if   a is odd

           ∀ a ∈ Z. 

Show that: 

1) f is a homo. 

2) find kernel (f). 

sol.: 1) if a, b ∈  Ze 
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⇒ f(a + b) = f(a). f(b) 

⇒L.S/  f(a + b) = 1     , a + b ∈  Ze 

R. S / f(a). f(b) = 1 

2) if a, b ∈  ZO 

⇒ f(a + b) = f(a). f(b) 

⇒L.S/  f(a + b) = 1     , a + b ∈  Ze 

R. S / f(a). f(b) = 1 

3) if a ∈  Ze & b ∈  Zo 

⇒ f(a + b) = f(a). f(b) 

⇒L.S/  f(a + b) = −1     , a + b ∈  Zo 

R. S / f(a). f(b) = −1 

∴ f is a homo. 

ker(f) = {a ∈ Z: f(a) = e′} 

= {a ∈ Z: f(a) = 1} 

= {Ze} 

 

Theorem 27:  let f: (G,∗) → (G′, ᴏ) be a group homo. then (ker(f),*) is a 

subgroup of (G,*).  

Proof:  
ker(f) = {x ∈ G: f(x) = e′} ⊆ G 

∵ f(e) = e′ ⇒ e ∈ ker(f) ≠ ∅ 

Let a, b ∈ ker(f) 

⇒ f(a ∗ b−1) = f(a)ᴏf(b−1) 

= f(a)ᴏ(f(b))
−1

 

= e′ᴏ(e′)−1 = e′ 

∴ f(a ∗ b−1) = e′  ⇒ a ∗ b−1 ∈ ker (f)  

∴ (ker(f),*) is a subgroup of (G,*).  
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Theorem 28:  let f: (G,∗) → (G′, ᴏ) be a group homo. then ker(f)={e} iff f is one 

to one.  

Proof:  

⇒ suppose  ker(f)={e}  T.p. f is one to one  

⇒ Let f(a)=f(b) 

⇒ f(a) ᴏ (f(b))
−1

= f(b) ᴏ(f(b))
−1

 

⇒ f(a) ᴏ (f(b))
−1

= e′ 

⇒ f(a ∗ b−1) = e′    [ f is homo. ] 

⇒ a ∗ b−1 ∈ ker(f) = {𝑒} 

⇒ a ∗ b−1 = 𝑒  ] ∗ b 

⇒ a=b 

∴ f is 1-1  

⇐ suppose f is (1-1) T.p. ker(f) ={e} 

Let a ∈ ker(f) ⇒ f(a)= e′ 

Since f(e) =e′ 

⇒ f(a)= f(e) ⇒ a=e [ since f is 1-1] 

∴ ker(f)={e}. 
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