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[Group of Algebra]

Definition: Let S be a nonempty set, a binary operation * is a function from the
Cartesian product S X S into S.

Mathematically: Let S # @and*:S XS — Sisafunctions.t.x(a,b) =a=*
b,Vva,b € S.

Examplel: Let +: N X N — N is a function that is a binary operation on N since
Va,beN: + (a,b)=a+bEN.

Example2: .:R X R = R is abinary operationonR..

Example3: +:Z X Z — Z is not binary operation since Va,b € Z: + (a,b) = a +
begZ.

Definition: a mathematical system (mathematical structure), is a nonempty set of
elements with one or more binary operations defined on this set.

Example: (N,+,.) isa math. sys., (R,.,¥) is a math. sys. (Z,.,%) is not math. sys.,

Questionl: let S={1,-1,i,-i} s.t. i>=-1. Is (S,.) construct a math. system where (.)
is an ordinary multiplication?

Question2: If Z. and Zo denote the even and odd integers respectively, are
(Ze,+,.) &(Zo,+,.) constitute mathematical system?

Definition: The operation * defined on the set S is said to be associative if,
(a*b)xc=ax(bx*xc) : ab,c €S.

Examplel: + is an associative operation on N,Z,Q and R. also (.). but (-) is not
asso. operation on R.

Example?: Let * be an operation defined on Z s.t. a*b=a+b+ab:
a,b € Z. Show whether that * is an associative operation on Z.

Sol. Leta,b,c € Z
(axb)xc=a=*(bx*c)
LS. (a*b)*xc=(a+b+ab)x*c
=(a+b+ab)+c+(a+b+ab)c
=a+b+ab+c+ac+ bc+ abc

RS.ax(bxc)=ax*(b+c+ bc)
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=a+((b+c+bc)+alb+c+ bc)
=a+b+c+bc+ab+ac+ abc
~ LS=R.S.

~ * Is an ass. operation on Z

Definition: A semi group is a pair (S,*) consisting of a nonempty sets together
with an associative binary operation * defined on S.

Example: Let Q be the rational numbers, definea *b = %(a +b):a,b €Q.
prove if (Q,*) is a semi group or not?

Solution: a* b =%(a+b):a,b € Qthenaxb e Q

~* is closed
leta,b,c € Q
ax(bxc)=(a*xb)=*c
1
L.S./a*(b*c):a*[g(b+c)]
_1 +[1 b+ ]—1 fipgl
=glat |z =7zatgb+gc

R.S./(a*b)*c=%(a+b)*c=%[§(a+b)+c]
:ia+%b+%c

+ L.S.# R.S.

~ * IS not associative

Then (Q,*) is not semi group.

Definition: The system (S,*) is said to have a (two- sides) identity element for
the operation * if there exists an element e in S such that:

axe=ex*xa=a foreverya €S
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Example: (0) is the identity element for the systems (Z,+),(Q,+),(R,+) and (1)
for (N,.).(Z,.),(Q..).(R,.).

(Ze,.) has not identity element

Example2: LetS={a+bvV2 : ab €
Z}is the system (S, .)has an identity element?

Sol.Va+bvV2 €5 e, +e,W2 €85 st
(a+bv2 )(e; +e,v2) = (e; +e;V2)(a+bV2 ) = (a+bV2 )
LS./(a+bv2 )(e; +e,v2) = a+bV2

ae; + 2be, + (ae, + be))V2 = a+bV2

a— 2be,
ae; +2bey;=a.. (1) —-e = — - 3)
ae, + be; =b ... (2)
Substitute 3 in 2 we get
ba — 2b?e,
ae, + —— =D

a
a’e, + ba — 2 b*e, —ba =0

(a?—2b%e, =0

g 62 == O
g 61 = 0
R.S./ Similar

H.W. Is (Z*,.) has identity?

Definition: Let (S,*) be a mathematical system with identity element e. An
element a € S is said to have a (two — sides) inverse under the operation * if
there exists some number a~! € S such that:

In particular, since e*e=e we may infer thate ™! = e.
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Example: Consider the set G={1,2,3}, and * is a function defined by the
operation table. Find the inverse for each element?

* 11 ]2 |3
1|1 |2 |3
2 12 |3 ]1
3 |3 |1 |2

Definition: A group is a pair (G,*) consisting of a nonempty set G and a binary
operation * defined on G, satisfying the following conditions:

1) G is closed under the operation *.

2) The operation * is associative.

3) G contains an identity element e for the operation *.

4) Each element a of G has an inverse a™! € G relative to *.

Definition : The pair (G,*) is a group if and only if (G,*) is a semi group with
identity in which element of G has an inverse.

Examplel: (Z,+) ,(Q,4),(R,+), (Q-{0},.), (R-{0},.) are all groups.
Example2: G=R/{1}, a* b=a + b —ab , show that (G, *) is a group.

Sol.: 1) Since a+ b-ab €eGthenaxbeG -
(G,*)is a mathematical system.

2)leta,b,c eG—->(axb)*c=ax(bx*c)

LS/(a*b)*c=(@+ b-ab)*xc=(@+ b-ab)+c—(a+ b-ab)c
=a+b—ab+c—ac—bc+abc
RS/a*x(b*xc)=a*(b + c-bc)=a+(b + c-bc)—a(b + c- bc)
=a+b+c—bc—ab—ac+abc

~ * Is an associative operation on G.

3) a*e=e*a=a

L.S.)a*xe =a — a+ e —ae = a(by cancellation law
-»(1—-ae=0-e=0€G

R.S.)e*xa=a — e+ a—ea=a(by cancellation law



[Group of Algebra]

—»e(l—a)=0-e=0€G

~ (G,*) has an identity element e=0.

HHa*al=al*a=e
L.S)a*xa!l=e—oa*xal=0-oa+al—-aal=0

> (1-—a)at=-a

1

RS)alxa=e—-alxa=0-al4+a—-ala=0

—»al(1l—-a)=-a
»al=—" €@
1-a

~ (G,*) is a group
Example2: let G = {(x,y):x,y € R} and * defined on G as:
V(x,y),(a,b) € Gthen (x,y) * (a,b) = (x+a,y+b)
Show that (G,*) is a group.
SO )R+ -G +#0
Let (x,y),(a,b) € Gsuchthata,b,x,y €R
- (x,y)*(a,b)=(x+ay+b)€eG
Sincex+ay+beR
~ Gisa closed under *.
2) let (x,y),(a,b),(c,d) € G,x,y,a,b,c,d €R

L.S)[(xy) * (ab)] *(c,d) = (x+a,y+b) x(c,d) = (x+(@a+c),y+
(b+d))

=(x+@+0,y+b+d)=xy)*(@+cb+d)
= (x,y) *[(a,b) x (c,d)] =R.S
~ * |s associative on G.

3) Let (x,y) €G,x,y ER s.t.

(X, Y) * (elleZ) = (X, y) - (X + €1y + eZ) = (X' Y)
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->X+e =X,yt+e, =y

—> e =X—X ,e,=y—Yy

- e =0,e,=0

— (e1,e3) =(0,0) €G

Similarly (eq, e,) * (x,y) = (x,y)

~ (e1,e,) = (0,0) € Gis an identity element.

4)let (a,b) € G,a,b € R and
(a,b) * (c,d) = (eq,€5)
— (a,b) * (c,d) = (0,0)
- (a+cb+d) = (0,0)
—-a+c=0, b+d=0

, d=-b

- (c,d) = (—a,—b)

~ (—a, —b) is the inverse element of (a,b).

- c=-a

Then (G,*) is a group.

Definition: If A is an arbitrary set, then the set whose elements are all the
subsets of A is known as the power set of A and denoted by P(A):

P(A) = {B:B C A},P(A) = 2".

Note: 1) If A = @ - P(A) = {@}

2)Ifx € A—- {x} € A—- {x} € P(A).

3) Since ® < A and A € A we always have {@, A} € P(A).

4) If A is a finite set with (n) elements then P(A) is itself a finite set having 2"
elements.

Example: Suppose the set A={1,2,3}, then P(A)
={0,{1},{2},{3},{1,2},{1,3},{2,3}, {1,2,3}}.

Example: Suppose the set A={a,b} and A is a symmetric difference operation
defined on A. Is (P(A),A) constitute a group?

LA [ o [{a} | {6} [{ab}
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o | ¢ | {a} | {b} |{ab}
{a} | {a} | @ |{ab} {b}
{b} | {b} |{ab}| @ | {a}

{ab} {ab}| {b} | {a} | @

H.w.
1) prove if (P(A),U) is a group or not?

2) suppose that a € R — {0,1} and consider the set G = {a¥:k € Z}.1s (G,.)
constitute a group.

Theoreml: Let (G,*) be agroup, a € G and m, n € Z. the powers of a obey the
following laws of exponents:

1) an*am=an+m=am*an
2) (an)m — anm — (am)n

3) a = (@"1?

4) e" =e

Definition: the operation * defined on the set S is called commutative if a*b=b*a
for every pair of elements a,b € S.

Examplel: Let S=Z , a*b=a+b-1
Solution: leta,b € ZS.T:
a*b=a+b-1=b+a-1=b*a

~* Is a commutative.

Example2: Let S=R/{0} , a*b = % then * is not comm. operation.

Definition: Let (G,*) be a group, if * is a commutative operation on G then (G,*)
Is called a commutative group.

Example: (Z,+), (R,4), (Q,+), (Q/{0},.),(R/{0},.) are comm. group.

Example2: Take the set G as consisting of the six function f;,f,,...fs, where for
all x € R — {0,1} we define f,(x) = x , f,(x) = l () =1—xf,(x) =

xX—1 X 1
=600 =3
Is (G,o) be a commutative group.?

Solution:

’ f; > f5 s fs fe
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f; f; f, f5 fs fs fe
f f f; fe fs £ f3
f5 f5 fy f; > fe fs
s s f5 fs fe f, fy
fs fs fe fs f5 fy >
fe fe fs f, f; f5 £y

From the table:

1) (G,,) is a math. sys.

2) , Is as associative operation on G.

3) e = fl

4) (D =, ()T =6 E) T =) T =1, ()T =5, ()T =1

=~ (G, ,)is a group.
5) L.S) (f; 0 f3)(x) = f[f3(xX)]

1
=f[1-x] = 1—_x fe (x)

R.S) (f30 ) (%) = f5[f,(x)]

—f(l)—l 1_x—1_f(
-3 \x/) X X = ()

+LS#RS

(fZ o f3) * (f3 o fZ)

o 1S not comm. operation on G.

= the group (G,,) is not commutative.

HW). LetM = {[2 3 ,a,b,c,d € R} and * define on M as:

v B[ Y] e then

[i 3] * [)Z( 3,\,] = [i ::__)Z( 3::3;] show that (M,*) is a commutative group?

Theorem2: The identity element of a group (G,*) is unique, and each element of
a group has inverse element.
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Proof: Let (G,*) be a group has two identity element e; and e, then V¥ a € G:
axe =e;*xa=a ..(1)

and

axe,=e,*xa=a ..(2)

Equality (1) and (2) we have

a*e,=ax*xe, > e =e,

So, the identity element of a group (G,*) is unique.

To show that an element of a group (G,*) has exactly one inverse, we assume
that a € G such that a has two inverse element a;! and a;* then

axajl=ailxa=ce..(3)

axa,! =a;lxa=e..(4)

Equality (3) and (4) we have

axail=axa;!...(5

Multiply both sides of (5) from the left by a;?! or a;* we have
(ai'*a)*xa;' = (a7’ *a) xaz’

—exa;l =exa;!

1= g;!

- aj
=~ each element of a group (G,*) has exactly one inverse element.
Corollary: If (G,*)isagroupthen (a )™ =a Va €G.
Proof: Let a € G, since (G,*) isagroupthen3da™! € G s.t.

l=glxa=e..(1)

axa
Now, since a ! € G,then3 (a )" € G s.t.
alx@DtT=(@Hlxal=e..(2
From (1) and (2) we have

-1 _

axal= al*x(a@a!)?!

—a~! has twoinverse elementsaand (a~!)7?!
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But from (theorem 2) each element of a group (G,*) has exactly one inverse
element.

v (aHl=a.

Example : let G={1,-1,i,-i} s.t. i>=-1 and () is a binary operation on G. find
i_l ) (_1)—1, (i_l)_l, (_i—l)—l

Lemma: If a,b,c,d € G and (G,*) is a semi group then
(@*b)*(c*d)=a*((b*c)*d )

Proof: L.S.) (a*b)*(c*d)

Let m=c*d

=(a*b)*(c*d)= (a*b)*m =a*(b*m) [since * associative]

= a*((b*(c*d ))=a*((b*c)*d).

R.S.) a*((b*c)*d )= a*((b*(c*d)) [since * associative]

Let m=c*d

= a*(b*m) = (a*b)*m [since * associative]

= (a*b)*(c*d)

~ (@*b)*(c*d)=a*((b*c)*d )

Theorem3: If (G,*) isagroup, then (axb) "' =b l*xa lvabeqG.

Proof: = clearly (a*b) * (a* b))t =(a*xb) 1 x(axb)=e

a(axb)*(txal)=((axb)xb™1) xa! [from the lemma]

=(a*x(b*b))xal=(axe)xat=axal=e
(axb)l=b"1lxa71

Corollary: If (G,*) is a commutative group, then (axb) ! =a 1 «xb™! va,b €
G.

Proof: Since (G,*)isagroupthen (a*b)™t=b"1xa"! [byth.3]
Butb™lxa ! =a l«b~1 [* comm. operation]
(a * b)—l — a—l * b—l

H.W. Let G denotes the set of all ordered pairs of real numbers. If the binary
operation * is defined on the set G by the rule
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(a,b) * (c,d) = (ac,bc + d) then show that (G,*) is not commutative group?
And find

(@34 2™t =13
Theorem4: (Cancellation law)

If a,b and c are elements of a group (G,*) such that either a*c=b*c or c*a=c*b
then a=b.

Proof: since c € G and (G,*) is a group then c™! € G exists

Multiplying the equation a*c=b*c both of sides from the right by ¢~ we obtain
(a*c)* ¢! =(b*c)* ¢!

Then by associative law this becomes a*(c*c™1) =b*(c*c™1)

= a * e=b*e

= a=b

Similarly we can show that c*a=c*b implies a=b.

Theoremb: In a group (G,*) the equation a*x=b and y*a=b have a unique
solution.

Proof: Letx =a 1 =xb

~a*@'*b)=b

> @aYH*h=b=>e*b=b=b=b

To show the solution is unique, let x" € G suchthat a*x' = b
=a *x' = a * x [ by cancellation law]

=>x' =x

Corollary : In a multiplication table for a group, each element appears exactly
once in each row and column.

Proof: leta,b € Gand letx; + x, € Gs.t.
a*xx,=Db
a*xx, =Db
LA*X] = Ak X,

By theorem (5) we get x; = x,.
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Problems

1) Given a,b are element of a group (G,*) with a*b=b*a show that (a * b)* =
a « b* for k € Z.
Proof:
If k=1
> (axb)l=axb
If k=2
= (a*b)?> = (a*b)*(ax*Db)
=axaxbxb (sinccaxb=>b=xa)
= aZ k b2

Let k=r is true

=>(@=*b)" =a" xb"

Now , we will prove when k=r+1
= (a*b)*1 = g1« prt1
=a"«b"xaxh

=a" xa*xb"*b (sinceaxb =b*a)

— ar+1 % br+1

. (a*b)":ak*bk

2) Given a? = e for every element a of the group (G,*). show that the group
must be a commutative.
Proof: leta,b €G 2a’?=¢e,b’=¢

a’?xb?=exe=c¢e..(1)

“a€G,b €EG =>ax*b €G (*isclosed)
(@xb)?=e..(2)
from (1)&(2)we get
a? xb? = (a x b)?
axaxbxb=(axb)*(axbhb)
ax(axb*b)=a=* (b * (a * b)) (by cancellation law)
(axb)*b=(b*xa)*b
a*b=>bx*a
=~ the group (G,*) is comm.

3) Suppose that G = {1,_1+2‘/§i,_1_2‘/§i} and () is the ordinary multiplicative

operation show whether that (G,.) constitutes a group or not?
Sol.:
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1 —1++V3 i —1-+/31i
2 2
1 1 —1+V3 i —1-+/31i
2 2
—1+V3 i —1++/3 i —1-+3i L
2 2 2
—1-+/31i —1-+3i L —1++V3 i
2 2 2

The group of symmetries of a square

The eight symmetries of the square are
G = {R340,Ro0, R1g0, R270,H,V,D4,D,}  and (o) is an operation on G

represents , ation or ref v tion. 5

= (G, o) is a group but is not comm. Group.

(Permutation) or Symmetric
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Definition: Let A be a non-empty set, then every (1-1) and onto map is called
(permutation)or symmetric on A and denoted by:

1-1)
symm(A) = {f: A - A} the set of all permute on A.
(onto)

Example: Let A={x,y} write all permute on A.

(1-1)
Solution: symm(A) = {f: A - A}
(onto)

: X V(XY
symm(A) = {i,, f} = {(X )’(y X)}
Remark:
1) If A'is a finite set, then symm(A) is a finite.
2) If A contains n elements (finite), then symm(A) contains n! elements.
3) We shall written symm(A) as S, or P, where A contains (n) elements.
4) The identity element for (P,, o) is the permutation G g E) :
5) The multiplicative inverse of any permutation f € S, is described by f~1 =

D

Example: If A={1,2,3} write all permute on A. then show (P3, o) is a group of
symmetric.

Solution: P, = P3=3!=6

0= 2 D=0 2 D6=C 3 Da=( 2 Do

-G 1 )
h=(3 3 1)
e D0 DA DG DA T D
2(2 3 1)}

(Ps, 0)isagroup ? HW
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Definition:
f(n;) = nj44
f(ng) = ny

Letn,, n,,...,n, distinct integers between 1 and n. if a
permutation f € S,, such that:

for 1<i<k
and f(n) =n Vvn¢& (ny,n,,.., ng)

Then f is said to be a k- cycle or a cycle of length k.

In the symmetric group (Ps, o)

(123

1 5 2
also

G713

W A

5

3) =2 5 3) 3 —cycle

5

5)=(1 4 3 2) 4—cycle

e The cycles can be multiplied by the functional composition operation thus
in (Ps, o)we have

(2 5 3)o(1 2 4 3)=(

ERSEEEERE
=(12345)
5 4 1 2 3

f(1)=5 , f2(1) = f(f(1)) = £(5) =3

f3(1) =£(f>(1)) =f(3) =1

Find £2(2).

Definition : the simplest of permutation are 2 — cycle this called transposition.

1 — cycle — Identity permutation.

Corollary: every permutation may be expressed as the product of transpositions

that is:

(1,2,...k0=(1k)(1k-1)...(12)

Example: f=(1 2 4 3)=(13)(14)(12)

Note: A permutation of a finite set is even or odd a according to weather it can
be expressed as a product of an even number of transposition or the product of
an odd number of transposition.

Example: (123)=(13)(12) even
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Definition : A group (G,*) is said to be cyclic if there exists an element a € G
such that every element of G is of the form a* for some integer k.

Such that an element a is called a generator of the group. The cyclic group G is
denoted by G=(a). that is

G={ak:keZ}

Note: if the binary operation is (+) then the cyclic group is written by G = {ka :
k € Z}.

Examplel: (Z,+) is a cyclic group generated by 1 &-1. that is
Z={k(1):keZ} &Z={k(-1):keZ}.

Example 2: let G={1,-1,1,-i} and (.) is an ordinary multiplicative operation.
Show that (G,.) is a cyclic group?

Solution: (G,.) is a group
(G,.) is a cyclic group generated by | &-i
The Group Of Integers Modulo n :

Definition: let n be a fixed positive integer. Two integers a and b are said to be
congruent modn, written: a = b (modn) if and only if the difference (a-b) is
divisible by n. that is

a = b(modn) & a—b = kn forsomek € Z

For example, if n=7 we have 3 = 24(mod7) - 3 — 24 = 7k for some k € Z
-21

sk=—=-3

7
Example2: 10 # 4(mod5) since 10 — 4 + 5k for somek € Z

Note/if a-b is not divisible by n we say that a is in congruent to b modulo n and
in this case, write a # b(modn)

Definition: Division algorithm

Let a and b be integers with b>0 then there exist unique integers g and r with
property that a=bg+r where 0 <r <b.

If b/a then r=0 that is a=Dbq.
Example: leta=19 & b=5then 19=5(3)+4 0<4<5
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Theorem6: let n be a fixed positive integer and a,b be arbitrary integers. Then
a = b (modn) iffa and b have the same remainder when divided by n.

Proof: suppose that a = b (modn)
= a=b+kn for some integer k.
On division by n,b leaves a certain remainder r :
b=qgn+r where 0 <r<n, q€Z
thus a=b+kn = (qn+r)+kn
=(g+k)n+r
Which shows a has the same remainder as b.
Conversely:
Leta = qyn+rand b = g,n + r with the same remainder 0 < r < n.
Then
a—b=(qn+r)—(gn+r) =(q; —qz)n with(q; —q;) €Z
Hence, n is a factor of a-b and so a = b (modn)
Theorem?7: let n be a fixed positive integer and a,b,c arbitrary integers. Then

1) a = a (modn)

2) ifa = b (modn) then b = a (modn)

3) ifa = b (modn) and b = ¢ (modn) then a = ¢ (modn).

4) ifa=b (modn) and ¢ =d (modn) then a+c=b+ d(modn), ac=
bd (modn)

5) ifa = b (modn), then , ac = bc (modn).

6) ifa = b (modn), then a* = b* (modn) for every positive integer k.

proof(1): for any integer a, since a-a=0.n 0 € Z
= a = a (modn)

Proof(2): if a = b (modn) then a-b=kn, k € Z
= a-b=kn ] (-1)

= - (a-b)=-kn

= - (a+h)=(-K)n

= b-a=(-k)n where =k € Z
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= b = a (modn)

Proof(3): ifa = b (modn) and b = ¢ (modn) then a-b=kn and b-c=hn, for
some k,h € Z

= a-b=kn ... (1)
b-c=hn ...(2)
a-c= kn+hn

= a-c =(k+h)n, (k+h) € Z
= a = ¢ (modn)

Proof(4): ifa=b (modn) and ¢ =d (modn) then a—b=k;n&c—d =
k,n for some integers k;,k, € Z.

Now (a+c)-(b+d)= (a-b)+(c-d)

=k;n+k,n=(k; +k,)n ,(k;+k,)€Z

=(a+c)-(b+d)= (k; + k,)n

= (a+c) = (b+d) (modn)
Also/ ac = (b + kyn)(d + k,n)

= bd + (bk, + dk; + k;k,n)n

Since (bk, + dk; + k,k,n) is integer
~ac = bd + ksn where ks = bk, + dk; + k;k,n
= ac = bd = k3n
= ac = bd (modn).
Proof(5): ifa = b (modn) then a-b=kn, k € Z
and ¢ = ¢ (modn) for 0 € Z then ac - bc=(a-b)c
= knc
=(ke)n, kce Z
~ ac = bc (modn).
Proof(6): we prove (6) by inductive argument

Since a = b (modn) = a' = b (modn)



[Group of Algebra]

= the statement true for k=1.

Assuming it holds for an arbitrary k, we must show that it also holds for k+1.
Since a¥ = bX (modn) and a = b (modn) from (4)

= aKa = bX b(modn)

= ak*1 = b¥*! (modn)

~a¥k=bX(modn) ,keZzZ".

Definition: Congruence class
Let a € Z the set of all integers congruent to a module n is denoted by [a] where
[a] = {x € Z:x = a (modn)}
[a] = {x€Z:x=a+kn, ke Z}
[a] is called the congruence class of a.

Example: suppose that we are dealing with congruence modulo 3. Then find [0],
[1], [-7].

Solution:
[0] = {x € Z:x = 0 (mod3)}
={x€Z:x=3k, keZ}
={..,—9,-6,-3,0,3,6,9,..}

Theorem 8: Let n € N then there is n of equivalent classes.
i.e. there is [0], [1], [2],...,[n-1] of equivalent classes.
Note: the set of all congruence classes is denoted by Z, where
Zy= {[0], [11, [2].....[n-1]}
For example, if n=4 then Z,= {[0], [1], [2].[3]} s.t.
[0] ={..,—8,—4,0,4,8,12,..}
find [1],[2], [3]
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Theorem 9: Len n be a positive integer and Z, be defined as Z,= {[0], [1],
[2],...,[n-1]},

then:
1) Foreach[a] € Z,,[a] # Q.
2) If [a] €Z, and [b] € Z,, then [a] = [b] that is, any element of the
congruence class [a] determines the class.

3) Forany [a], [b] € Z, where [a] # [b] then [a] N [b] = @.
4) U{la]:a € Z} =Z.

Definition: A binary operation (+,) may be defined on Z,, as follows:
For each [a], [b] € Z, = [a]+,, [b] = [a+ D]

Theorem10: For each positive integer n, the mathematical system (Z,, +n)
forms a commutative group, known is the (group of integers module n).

Proof: let [a], [b] € Z,

1) la]+4 [b] = [a +Db] € Z,
~ (Z,,+,) 1s a mathematical system
2) [a]l4+n([bl4n [c]) = [a]+n([b + ]

=[a+(b+c)]=[(@a+b)+c]
= [a + b]+y[c] = ([a]+n[b]+n[c]
~ +, IS associative operation on Z,,.

3) VI[a] €Z,,3[0] € Z,s.t.
la]+,[0] = [a + 0] = [a] = [0 + a] = [0]+y[a]
~[0] is the identity element of 4+
4) If [a]€Z, , then [n—a]e€Z, and [a] +,[n—a] =[a++(n—a)] =
[n] = [0]
Sothat [a]™! = [n — d]
5) [a]+n[b] = [a+ b] = [b + a] = [b]+,[a]
~ (Z,,+,) 1s a commutative group.

Example: show that (Z,,+,) isacomm. group.

Note: for simplicity, it is convenient remove the brackets in the designation of
the congruence classes of Z,,. thus we often write Z,, = {{0,1,2, ...,n — 1}

H.W./ Let G = {(a,b): (a,b™) € Z,}show that (G, +)is a group?
Subgroups
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Definition: Let (G,*) be a group and @ # H < G. The pair (H,*) is said to be a
subgroup of (G,*) if (H,*) is itself a group.

Examplel: If Z. and Z, denote the sets of even and odd integers respectively
then ( Ze,+) is a subgroup of the group (Z,+) while (Z,,+) is not.

Example2: consider (Z4, +) the group of integers modulo 6. If H={0,2,4} then
(H, +¢) is asubgroup of (Z¢, +¢).

Note: each group (G,*) has at least two subgroups ({e},*) and (G,*), these
subgroups are known trivial subgroup and any subgroup different from these
subgroup known proper subgroup.

Theoremll: Let (G,*) be a group and @ # H < G then (H,*) is a subgroup of
(G,*) iffa,b € Himpliesa*b™! € H.

Proof: =) Let (H,*) is a subgroup of (G,*) we have prove a*b™! € H
Leta,b € Hthena,b™! € H

= a*b~! € H (since * closure)

<) Let a*b~1 € Hthen

1) The operation * in H is a associative binary operation because H subset of
G.

2) LetabeEH=>axb 1 €eH
Ifa=b=>bxb e H=>e€eH

3) “beHandeeH=>exb e H=>b 1 eH

4) LetaeHand~ b 'eH=ax* (b)) 'eH=>axbeH

~ (H,*) is a subgroup of (G,*).

Example: (Z;,, +12) is a group let H={0,4,8} then (H, +,,) is a subgroup of
(Z,,, +12) according (theorem11) since::

0 '=0 @ '=8 B '=4
O* (4)_1 - 0 +128= 8 € H
O* (8)_1 - 0 +124= 4 € H

Thatisa,b€ Ha+,, b"t € H

Center of a group
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Definition : let (G,*) be a group the center of G is the center(G) and denoted by
cent (G) s.t. :

cent(G) ={ c EGicxx=x*c,VXE G}
Note: cent(G) # @ since 3 e € Gs.t.
exx=x*xe,VXEG- e € cent(G)

Theorem 12: Let (G,*) be a group then cent (G)=G iff G is a comm. group .

Theorem 13: let (G,*) be a group then (cent(G),*) is a subgroup of (G,*).

Proof: cent(G) # @ since e € cent(G)

Leta,b € cent(G)

Lar*x =x*a, b*x=x*b Vx € G|[ by definition of cent(G)]
(@b Hxx=ax(blxx) (xisasso.)

=a*(x 1+b)™! fromtheorem(a*xb)™? =b"1xa™?!
=a *(bxx"1H™1 (sinceb € cent(G))

=(@*x)*b! (xisasso.)

=(x*a)* b~ ('since a € cent(G))

=x*(@*b"1) (xisasso.)

s~ a*b™! € cent(G)

~ (cent(G),*) is a subgroup of (G,*).

Theorem 14: If (H;, *) is the collection of subgroups of (G,*) then (n H;,*) is
also subgroup of G.

Proof: 1) N H; # @ sinced e € H; , Vi
= e € N H;

2) letx,y € nH; = x,y € H;, Vi

= x xy~1 € H;, Vi (since H; subgroups)

= x*xy 1 €N H;



[Group of Algebra]

=(N H;,*) is also subgroup of G.

Example: (Z;5,+;5) is a group and H; = {0,3,6,9,12},H, = {0,5,10} are
subgroups of Z,c then

H, nH, = {0} - (H; n H,, +;5) is subgroups of Z,
H, UH, = {0,3,5,6,9,10,12}
(H; U H,, +45) is notsubgroups of Z;:

Theorem15: Let (Hq,*) and (H,,*) are two subgroups of (G,* ). Then (H; U
H,,*) is a subgroup of (G,*) ifand only if H; € H, or H, € H;.

Proof: =) LetH; € H, and leta,b € H;

~a=*b~1 € Hy (since (Hy,*) is a subgroup)

~ax*b~1 € H, (since H, € H,)

Similarly if H, € Hy

=>axb l€H; UH,

<) Let (H; U H,,*) isasubgroupand let H; € H, or H, € H;
Leta€e H;anda ¢ H, (a € H; — H,)

b e H,andb &H,; (b € H, — Hy)

Now let a = b € H; (since (Hq,*) is a subgroup)

~a~1*(a*b) e H,y

(a=!*a)*beH,

e*beH, »b € H; C!

also a * b € H, (since (H,,*) is a subgroup)

.~ (@b)xb ')eH, »a € H, C!

~ H; € H, orH, € H

Example: (Z,+) isagroup, ((2),+) and ((4),+) are subgroups of the group (Z,+).

Since ((4),+) € ((2),+) then (by the. 15) ((2) U (4),+) = ((2), +) is subgroup
of the group (Z,+).

Definition: If (G,*) isagroup anda € G write (a) = {a¥ : k € Z}, then
((a),*) is called the cyclic subgroup of the group (G,*) generated by a.
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Examplel: (Z,+)isagroupand (2) = {2k: k € Z}

= (2)={ ..., -4,-2,02,4.6,...}

Then ((2),+) is a cyclic subgroup of (Z,+).

Example2: (Z1,,+12) 1S agroup,

(3) ={3kmod 12 ,k € Z}

={0,3,6,9} thus ((3),+12) is a cyclic subgroup of (Z12,+12) .

Example3: the group of symmetries of the square is not cyclic but the subgroup:
(Roo)= { Roo, R1s0, R270, R3eo} is cyclic generated by the element Ry,
Theorem16: If ((a),*) is a finite cyclic group of order n then (a)={e,a,a>,..., a™
2y

Example: (Z15,+15) is a group

(5)={5% ke Z}

={5k :k € 7}

={0,5',5%}

={0,5,10}

=((5), +15) is a cyclic group.
Theorem17: Every subgroup of a cyclic group is a cyclic.
Example: (Z,+) is a cyclic group generated by 1, -1 so Z=(1)=(-1)

Then by the theorem 16 ((4),+) is a cyclic subgroup of (Z,+) also ((2),+), ((3),+)
and in general ((n),+) is a cyclic subgroup of (Z,+)where n € Z* U {0} .

Definition: let (G,*) be a group and (H,*), (K,*) are two subgroups of G then the
product of H and K isthe set H+* K ={h *k:h € H,k € K}.

Remark:

1) H*H=H?

2) If H={a} then H*K=a*K, if K={b} then H*K= H*D.
3) H*KcG

4) HuU KcS H*K.

Example: In the group of symmetries of the square, consider the subgroups
Hz{R3601 Dl} and KZ{Rgeo,V} then
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H*K= { Rss0 0 R3s0, R3so 0V, D10 Rssp, D10 V }
= { Rss0,V, D1, R27o}
(H*K, o) is not subgroup of G.

Theoreml18: Let (G,*) be a group and (H,*), (K,*) are two subgroup of (G,*)
then (H*K, *) is

a subgroup of (G,*) iff H*K= K*H.

Proof: suppose (H*K, *) is a subgroup of (G,*)

to prove H*K= K*H we should prove H*Kc K*H and K*H € H*K
letxeH+*K =>x=axb 3a €H,b €K

« H * K is a subgroup of G.

>x1eHx*K

x1=c+xd 3ceHAd€EK
x=xD1T=(cxd)t=dtxct! 3d1ekKrncteH
x=dl+xcteK«H

~ H*K € K*H

Llet yeKxH=>y=fxg 3f €K,g €H

« K+ H is a subgroup of G.

>y leK«H

yl=hxl dheKal€eH

y=@ HtT=t+«D)T=1T+xht>51"TeHarhteK
y=11«h"1eH=«K

= H*K= K*H

Conversely: let H*K= K*H

1) H*K+ @ since e=e*e € H x K
Also H*K € G

Now, letxye H«K ,T.P.x*y ' € H*K

XEH*K =>x=a*b3a€eHAbeK
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YyEH*K =y=c*d>3ceHAdeK
x*y t=(axb)*(cxd)"t=(axb)*x(d"xc7h)
=a* (b*d™1) * c71
(H,%), (K,*) are two subgroup of (G,*) > b*d™! €e K&c 1 €eH
~(b*d 1) xc ' e K«H
But H*K= K*H
Then (b*d™)*c ' eH*K 23 peH,geK 3 (bxd H*xct=pxgq
Now, a* (b*d ) *c = (a*xp)*xq€H*K
sxxy leH=*K
~ (H*K, *) is a subgroup of (G,*).

Example: (Z12,+12) is a comm. Group, H={0,6} and K={0,4,8} such that
(H,+12)and (K,+12) are subgroups of (Z12,+12) show that (H*K, +;,) is a subgroup
of (Z12,%12).

H+,,K={0,2,4,6,8,10}
~(H*K, +12) is a subgroup of (Z12,+12).

Definition: Let (H,*) be a subgroup of the group (G,*) and let a € G then the set
ax*xH={a*xh:heH}iscalled aleftcosetof HinGand H xa = {h xa:h € H}
is called right coset of H in G and a representative a * H and H * a.

If the group (G,*) is commutative then a * H = H * a.

Example: let (Z10,+10) be a group and H={0,5} be a subgroup of (Z10,+10) find
all cosets of H in Zy.

Theorm19: let (H,*) be a subgroup of (G,*) and a € G then:
1) His itself left coset of H in G.
Proof: sincee € G
=e*H = {e*h:h € H}=H

2) IF ((G,*) is a belian group then
a*H=H%*a

proofa*xH={a*xh:heH}={hxa:heH}=H=xa

the converse is not true.
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Example: (S, 0) , H={f.,f5,fs} ,a=1,
fyo H={ f4, fp, 3} , H o fo={f4, T2, f3}
=>f,oH=Hof,

but (Ss, 0) is not a belain group

3) acaxH
Proof: since ee H
= a=a*e€ a* H

Theorem?20: If (H,*) is a subgroup of the group (G,*) then a*H=H if and only if
a € H.

Proof: suppose that (H,*) is a subgroup of the group (G,*) such that a*H=H
sincee € Hand foreverya € Gwehave a=a*xe€ax*H.

But a*H=H hence a € H.

Conversely: Leta € H to prove that a*H=H.

Let xe a*H= x=a*h for some h € H

Sincea€e Handh € H=ax*h € H {(H,*) is a subgroup}
Hence x € H

~ax*HCH ..(1)

Now,Lethe H=h=exh=(a*xa !)xh=ax(a"!«h)
SinccaeH=atleH {(H,*)isasubgroup}
=al+xheH

Thenax*(a"'«xh)€eaxH

Henceh € ax H

~sHca*H ... (2)

From (1) & (2) we have a*H=H.

Theorem2l1: If (H,*) is a subgroup of the group (G,*) then a*H=b*H if and
onlyifal «b € H.

Proof : Let a*H=b*H then we have to prove a—! = b € H that mean

3hy,h, € H
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=a*h; =bxh,

= (a"l*a)+*h; = (a1 xb) = h,
=>h; =alxbxh,

=h; *h;! =al*b=(h,*xhy?)
=h,; *h;! =a1xb

=h; *h;1 € H

Conversely: Leta~! « b € H we have to prove that a*H=b*H
=>alxbxH=H (Bytheorem 20)
= leth;, h, € H

=>alxbxh;=h,

= (a*a ) xbxh; =axh,
=>bxh; =axh,

=>bxH=axH

Theorem?22:

If (H,*) is a subgroup of the group (G,*) then left(right) cosets of H in G form a
partition of the set G.

Example: consider (Zi2,+12) the group of integer modulo 12. If we take
H={0,4,8}, Then (H, +1,) is a subgroup of (Z1,+1,) the left cosets of H in Z;, are

0+, H=H=4+,, H=8+,, H
1+, H={1,59} = 5+,, H=94,, H
2+, H=1{2,6,10} = 6+,, H = 10+, H
34+, H=1{3,7,11} = 74+,, H= 11+, H
HUl+,, HU24,, HU3+, H=2Z,

Also
Hﬂl+12Hﬂz+12Hﬂ3+12H=®

Thus the left (cosets) of H in Z;, form a partition of the set Z,,.
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Definition : If (H,*) is a subgroup of (G,*) the index of H is the number of coset
(left or right) of H in G which is denoted by r.

Definition : the number of elements in a group (G,*) is called the order of G.
Theorem23: (Lagrang theorem)

The order and index of any of any subgroup of a finite group divides the order of
the group.

That is order (G)=index(H). order(H)
Or  o(G)=o(H).r

Proof: suppose G be a finite group 3 0(G) = n and H be a subgroup of G 3
o(H)=m .

Let risthe index of Hin G
Leta, * H,a, x H, ...,a, x H are left cosets of H.
a;*HUa,*HU ...Ua, *H=G

and
a;*Hna,*HN..na,*H=0

o(a; *xH) + o(ay *H) + -+ o(a, * H) = o(G)
m+m+--+m=n
=rm=n
= 1.0(H)=0(G)

Example: let G={1,-1,i,-i}, (G,.) is a group and H={1,-1} where (H,.)isa
subgroup of (G,.). The left cosets of H are

1H={1,-1}=H

-1.H={-1,1}=H

iL.H={i,-i}

-iL.H={i,-i}

= the distinct left cosets of H are {1.H, i.H}

~index H=2 and by Lagrange’s theorem
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o(G)=0(H).r
_ o(G) 4

FTom) T 2

Definition: A subgroup (H,*) of the group (G,*) is said to be normal (or
invariant) in (G,*)iff every left coset of H in G is also a right coset of H in G that
Is a*H=H*a for every a € G.

Example: The subgroup ((4),+12) is normal in Z;, since:
Left H=(4)={0,4,8}
0+,,H=H ,H+,,0=H
14,, H=1{1,59}, H+,, 1 ={1,59}
24+, H=1{2,6,10}, H+,, 2 = {2,6,10}

~at+;, H=H+,a foreverya € H
Remarks:

1) Every subgroup of a commutative group is normal.

2) We denote for any normal subgroup (H,*) of (G,*) by HAG.
3) {e}AG.

4) cent(G)AG.

Definition: If (H,*) is a normal subgroup of the group (G,*) then we shall denote
the collection of distinct cosets of H in G by G/H:

G/H ={a*H:a € G}
A rule of composition @ may be defined on G/H by the formula
(@*H) ® (b*H)=(a*b)*H Va,b € G
~ (G/H,Q) is called quotient group of G by H.
Theorem 24: let HAG. then (G/H,&) is quotient group.
Proof: 1) Va,b € Gs.t:
(a*H) &(b*H) € G/H
Then (a*H) @ (b*H)=(a*b)*H € G/H
Sinceax*b € G [(G,*)is a group]
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~ (G/H,®) is a mathematical system.

2)Leta,b,c €G s.t.:
[@*xH)® (b*H)]® (c*H) =(axH) ® [(b*H) ® (c*H)]
(@xb)*xH) @ (cxH) = (a*(b*c))*H=(axH) ® ((b*c)*H)
= (a*H) ® ((b*H) * (cxH))

~@ is associative operation on G/H.

3) Identitye*H=He G/H V a*xHe€ G/H
(a*H)® (exH)=(axe)*H=axH
(exH® (axH)=(exa)*H=axH

4) VaxHe G/H3a+HEeG/H

@xH®@'«H) =(@*a)*H=exH=H
@l'+H®G@+H)=(@al+*a)*xH=exH=H

~ (G/H,®) is quotient group
Example: Let (Zs,+s) and H={0,3} find Zs/H? then prove (Zs/H, Q) is a
quotient group.
Sol./ Zg/H={H,1+H, 2+H}

® H 1+H [ 2+H
H H 1+H | 2+H

1+H | 1+H [ 2+H H

2+H | 2+H H 1+H

Homomorphism

Definition: Let (G,*) and (G’,0) be two groups and f is a function from G into
G’ i.e f: G —» G’ then f is said to be a homomorphism from (G,*) into (G’,0) if
and only if

f(a*b)=f(a) o f(b)
where a,b € G
Examplel: Define the function f: (R,+) - (R —{0},.) by f(a) = 22 va€R
Is f homo.?
Sol./ f(a + b) = 23*b
=23,2b
= f(a).f(b)

= fis homo.
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Example2: Define the function f: (Z, +) — (Z,+) by f(x)=x Vx € Z, isf
homo.?

Sol.: L.s/ f(x+y)=x+y=Ff(x)+f(y)
= f is homo.

Example3: Define the function f: (R*,.) = (R, +) by f(x)=e* vx € R*,isf
homo

Sol.: let x,y € R*
= f(x+y)=e*Y
*e* +eY
* f(x) + f(y)
=~ fis not homo.

Example4: Suppose that (G,*) and (G’,0) are two subgroups with identity
elements e and e’ respectively. The function f: G — G’ given by f(a)=e’ for each
Va € G is a homo.

f(a*b)=¢’=e’ 0 ’=f(a) o f(b)

~ fis trivial homo.

Example5:_let f: (G,x) — (G,*) defined by f(a)=x*a*x?! Vva € G, prove that f is
a homo.

Sol. Leta,b € G then

L.S./ f(a*b)= x*(a*b)* x*

R.S/ f(a)*f(b)=(x*a*x1)*(x*b*x 1)
= x*a*(x1*x)*b*x?

=x*(a*b*) x*

=~ fis a homo.

H.w. In the following situations determine whether the indicated function f is
homo. from the first group into the second group.

a)f@=-a, f: (R +) = (R +).
b) f(a)=|al , f: (R —{0},.) = (R",.).
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c)f@=a+1,f:(Z,+) - (Z+).

d) f(@)=a% ,f: (R—{0},.) - (R",.).

e) f(@)=na (n afixed integer), f: (Z,+) —» (Z,+).

Theorem?25: If fis a homo. from the group (G,*) into the group (G’,0) then :

1) f(e)=e’ where ¢’ is an identity element of G’.
2) fa™Y) = (f(a))™* Va€eaG.

Theorem 26: Let f be a homo. From the group (G,*) into the group (G',0) then :

1) For each subgroup (H,*) of (G,*) the pair (f(H), o) is a subgroup of (G',0).
2) For each subgroup (H',0) of (G’,0) the pair ((f(H"))™1, *) is a subgroup of
(G.™).

Proof: 1) f(H) # @ since f(e) = e’ € f(H)
Let f(a),f(b) € f(H)
f(a) o (f(b))™*=1f(a) o f(b™)
= f(a*b™1) € f(H)
=~ (f(H), o) is a subgroup of (G',0).
Proof: 2) (f(H"))™* # @ since e € (f(H"))™*
Leta,b € (f(H))™! 3 f(a),f(b) € H'
f(a*b™1) = f(a) o f(b™1)
=f(@) o (f(b))"* € H’
~f(a*b™1) € H' = a*b~! € (f(H"))™*

~((f(H"))~1, *) is a subgroup of (G,*).
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Definition: Let f be a homomorphism from the group (G,*) into the group
(G',0) and let e’ be the identity element of (G’,0). The kernel of f denoted by
ker(f) is the set:

ker(f) = {a € G:f(a) = €'}
Examplel: consider the function:
f: (Z,+) - ({1,,—1,1,—1},.) defined by f(n) = i" forn € Z, find ker(f).
sol:/ f(n; + n,) = i"*™
=i"t.i"2 = f(n,).f(n,)
=~ fis a homo.
To find the kernel, we have

ker(f) = {n € Z:f(n) = €'}

={n € Z:f(n) =1}
={nezi"=1}
={..,—8,—4,048, ..}

Example2: Let f: (R,+) = (R—{0},.) isahomo. and defined by
f(a) = 22 fora € R, find ker(f).

Sol:/
ker(f) = {a € R:f(a) = €'}

= {a € R:f(a) = 1}
={a€R:22 =1}
= {a € R:22 = 2°} = {0}
Example3: Let f: (Z,+) = ({1,—1},.) such that:

f(a) = {1 if a is even Vac7Z

—1if aisodd
Show that:

1) fis ahomo.
2) find kernel (f).

sol.:1)ifa,b € Z,
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= f(a + b) = f(a).f(b)
=>LS/ f(a+b)=1 ,a+be€e Z
R.S /f(a).f(b) =1
2)ifa,b € Zg
= f(a+ b) = f(a).f(b)
=>LS/ f(a+b)=1 ,a+be Z,
R.S /f(a).f(b) =1
3) ifa e Z. &b € Z,
= f(a+ b) = f(a).f(b)
=>LS/ f(a+b)=-1 ,a+be Z,
R.S /f(a).f(b) = -1
=~ fis ahomo.
ker(f) = {a € Z:f(a) = €'}
={a€Z:f(a) =1}
= (Z)

Theorem 27: let f: (G,*) — (G’, 0) be a group homo. then (ker(f),*) is a
subgroup of (G,*).

Proof:
ker(f) ={x € G:f(x) =e'} € G

v f(e) =e' > e€ker(f) # 0@
Let a,b € ker(f)
= f(a*xb~1) = f(a)of(b™!)
= f(a)o(f(b)) "
=e'o(e) 1 =¢
~faxb ™) =€’ > axb! € ker(f)
= (ker(f),*) is a subgroup of (G,*).
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Theorem 28: let f: (G,*) — (G', 0) be a group homo. then ker(f)={e} iff f is one
to one.

Proof:

= suppose ker(f)={e} T.p. fis one to one
= Let f(a)=f(b)

= f(a) o (f(b)) ™" = f(b) o(f(b)) "

> f(a) o (f(b)) " = ¢’

= f(axb ') =€’ [fishomo.]

= ax*b™! € ker(f) = {e}
=>axbl=e]xb

= a=b

~fis1-1

& suppose fis (1-1) T.p. ker(f) ={e}
Leta € ker(f) = f(a)= ¢’

Since f(e) =e’

= f(a)=f(e) = a=e [ since fis 1-1]

=~ ker(f)={e}.
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