Visual Programming in C# Asst. Lect. Ahmed A. Idris

Lecture - 5 Ponaes§ Computer Science Department

List Boxes

List boxes display a list of items and allow the user to select an item from the list.

Figure 5-1 shows a form, at run time, with two ListBox controls. At run time, the user may

select one of the items, causing the item to appear selected.

Figure 5-1 ListBox examples

sy ListBox Examples - . X

Dogs

Poodle

Great Dane
Geman Shepherd
Temer

Cats

Siamese A
Persian
Bobtail

omn
J

A scroll bar appears when a ListBox contains more items than can be displayed in the

space provided.



Visual Programming in C# Asst. Lect. Ahmed A. Idris

Lecture - 5 “&@Fi’ Computer Science Department

Once you create a ListBox control, you add items to its Items property. The items that

you add to a ListBox’s Items property are displayed in the ListBox.
To store values in the Items property at design time, follow these steps:

1- Select the ListBox control in the Designer window.

2- In the Properties window, the setting for the Items property is displayed as

(Collection). When you select the Items property, an ellipses button (@) appears.

3- Click the ellipses button. The String Collection Editor dialog box appears, as shown
in Figure 5-2.

4- Type the values that are to appear in the ListBox into the String Collection Editor
dialog box. Type each value on a separate line by pressing the Enter key after each
entry.

5- When you have entered all the values, click the OK button.

Figure 5-2 The String Collection Editor dialog box.

String Collection Editor ? X

Enter the strings in the collection (one per line):

0OK Cancel



Visual Programming in C# Asst. Lect. Ahmed A. Idris

Lecture - 5

Computer Science Department

The SelectedItem Property

When the user selects an item 1n a ListBox, the item is stored in the ListBox’s
SelectedItem property. For example, suppose an application has a ListBox control named
fruitListBox and a string variable named selectedFruit. The fruitListBox control contains
the items Apples, Pears, and Bananas. If the user has selected Pears, the following

statement assigns the string "Pears" to the variable selectedFruit:

selectedFruit = fruitListBox.SelectedItem.ToString();

- Notice that you have to call the Selectedltem property’s ToString method to retrieve
the value as a string.

- An exception (Error) will occur if you try to get the value of a ListBox’s
SelectedItem property when no item is selected in the ListBox.

- The items that are stored in a ListBox each have an index. The index is simply a
number that identifies the item’s position in the ListBox. The first item has the index
0, the next has the index 1, and so forth. The last index value 1s n—1, where n is the
number of 1tems in the ListBox. When the user selects an item 1n a ListBox, the
item’s index is stored in the ListBox’s SelectedIndex property. If no item is
selected in the ListBox, the SelectedIndex property is set to —1.

- make sure the SelectedIndex property is not set to —1 before trying to read the

SelectedItem property. Here is an example:



Visual Programming in C# Asst. Lect. Ahmed A. Idris

Lecture - 5 Computer Science Department
if (fruitListBox.SelectedIndex != -1)
{
selectedFruit = fruitListBox.SelectedItem.ToString();
}

More about ListBoxes

ListBox controls have various methods and properties that you can use in code to

manipulate the ListBox’s contents.
In this chapter, we use ListBox controls to display output.

You can write code that adds items to a ListBox control at run time. To add an item to a

ListBox control with code, you call the control’s Items.Add method.

ListBoxName.Items.Add(Item);

ListBoxName is the name of the ListBox control. Item is the value to be added to the

Items property.

Figure 5-3 shows the application’s form at run time. As shown in the image on the left, the
ListBox’s name is nameListBox and the Button control’s name is addButton. At run time,
when you click the addButton control, the names shown in the image on the right are

added to the nameListBox control.



Visual Programming in C# Asst. Lect. Ahmed A. Idris

Lecture - 5 Ponaes§ Computer Science Department

Figure 5-3 The Name List application

85! Name List — O X a5 Name List - O X
Chris
. Alicia
namesLlistBox —» Justin
Holly

addButton ———— | Add Names

Here is the code for the addButton_Click event handler:

1 private void addButton Click(object sender, EventArgs e)
2 {

3 namesListBox.Items.Add("Chris");

4 namesListBox.Items.Add("Alicia");

5 namesListBox.Items.Add("Justin");

6 namesListBox.Items.Add("Holly");

7 b

Figure 5-4 shows the application’s form. As shown in the image on the left, the ListBox’s
name is numberListBox and the Button control’s name 1s addButton. At run time, when
you click the addButton control, the numbers shown in the image on the right are added to

the numberListBox control.




Visual Programming in C# 7 Asst. Lect. Ahmed A. Idris

o
ALINAN

iz
12

Lecture - 5 “Z;@’\ Computer Science Department
Figure 5-4 The Number List application
85 NumberList Box — O X 85 NumberListBox — O X

10
20
30
40

numberListBox —

addButton —— Add

Here is the code for the addButton_Click event handler:

1 private void addButton Click(object sender, EventArgs e)
2 {

3 numberListBox.Items.Add(10);

4 numberListBox.Items.Add(20);

5 numberListBox.Items.Add(30);

6 numberListBox.Items.Add(40);

7 b



Visual Programming in C# Asst. Lect. Ahmed A. Idris

Lecture - 5 “&@Fi’ Computer Science Department

The Items.Count Property

ListBox controls have an Items.Count property that reports the number of items stored in
the ListBox. If the ListBox is empty, the Items.Count property equals 0. For example,
assume an application has a ListBox control named employeesListBox. The following if

statement displays a message box if there are no items in the ListBox:

if (employeesListBox.Items.Count == 0)
{
MessageBox.Show("There are no items in the list!");
}
The Items.Clear Method

ListBox controls have an Items.Clear method that erases all the items in the Items

property. Here is the method’s general format:

ListBoxName.Items.Clear();



