Asst. Lect. Ahmed A. Idris
Computer Science Department

Visual Programming in C#
Lecture - 3

Comments

Comments are short notes that are placed in different parts of a program, explaining how
those parts of the program work. Comments are not intended (aass 1e) for the
compiler. They are intended for any person who is reading the code and trying to

understand what it does.
In C#, as beginners there are two types of comments:

1- Line comments appears on one line in a program. You begin a line comment with

two forward slashes (/).

/private void showRightAnswer Click(object sender, EventArgs e) \
{

// Make the answer label appear to the user.

answerLabel.visible= true;

N Y,

2- Block comment can occupy multiple lines in a program. A block comment starts

with /* (a forward slash followed by an asterisk) and ends with */ (an asterisk

followed by a forward slash).

/private void showRightAnswer Click(object sender, EventArgs ¢) \
{

/* Make the right answer label show to the user.
When the user press the button it will show the result immediately */

answerLabel.visible= true;

\ /




Asst. Lect. Ahmed A. Idris
Computer Science Department

Visual Programming in C#
Lecture - 3

Writing the Code to Close an Application’s Form

To close an application’s form in code, you use the statement this.Close();. Figure 3-1

shows the form and code from a project named Exit Button Demo.

Figure 3-1 A form with an Exit button

Forml.cs + X |FGIESIOESFR]
[vB] Exit Button Demo ~ | 3 Exit_Button_Demo.Form1 « | @ exitE
-lusing System;
using System.Collections.Generic;

Form1l.cs [Design] + X _ using System.ComponentModel;
using System.Data;
. f___Wf___w i using System.Drawing;
o5’ Bt Button Demo iﬂ@ using System.Ling;
using System.Text;
Exit using System.Threading.Tasks;
using System.Windows.Forms;
* -Inamespace Exit_Button_Demo

ul
1 {
. - public partial class Forml : Fo
exitButton {
= public Forml()

’
1

}

InitializeComponent();

. , = private void exitButton_Click(object sender, EventArgs e)
The exitButton control’s {

Click event handler // Close the form.
this.Close();

—
i

TextBox Controls

The TextBox control is a rectangular area that can accept keyboard input from the user.
When the application is running, the user can type text into a TextBox control. The
program can then retrieve the text that the user entered and use that text in any necessary
operations. The Figure 3-2 shows a sample of TextBox control. When you create TextBox

controls, they are automatically given default names such as textBox1, textBox2, and so

forth.




Visual Programming in C# Asst. Lect. Ahmed A. Idris
Lecture - 3 Computer Science Department

Figure 3-2 A TextBox control

Formt.cs [Design)* = |
f N

a5 Form1 | el=] g

A
J

Il

m
C

When the user types into a TextBox control, the text is stored in the control’s Text
property. When you retrieve the contents of the Text property, you always get a string.
Let’s look at an example. Figure 3-3 shows the form, with most of the control names

specified, and Figure 3-4 shows the form’s code.



Asst. Lect. Ahmed A. Idris
Computer Science Department

Visual Programming in C#
Lecture - 3

Figure 3-3 The TextBox Demo application

Form1.cs [Design] -+ |

nameTextBox

Enter your name: | ,4_

You entered: 4—9— outputLabel

Read Input Exit

LA %
/ \

readInputButton exitButton

Figure 3-4 The form’s code (excluding the using directives)

SN < e G SR

TextBox Demo vI #3 TextBox_Demo.Form1 - I @ Form1()
[ﬁnamespace TextBox_Demo
{
B public partial class Forml : Form
A
S| public Forml()
{
InitializeComponent();
I }
S| private void readInputButton_Click(object sender, EventArgs e)
{
// Assign the name entered by the user to the
// outputLabel control's Text property.
outputlLabel.Text = nameTextBox.Text;
}
= private void exitButton_Click(object sender, EventArgs e)
{
// Close the form.
this.Close();
}




Visual Programming in C# /;\\ Asst. Lect. Ahmed A. Idris

Lecture - 3 Fo Computer Science Department
" uix P P

Notice in Figure 3-4 that the readInputButton control’s Click event handler performs the

following assignment statement:

outputLabel.Text = nameTextBox.Text;

This statement assigns the value of the nameTextBox control’s Text property to the
outputLabel control’s Text property. If you run the application, Figure 3-5 shows an
example of how the form appears after you have entered Kathryn Smith and clicked the

readInputButton control.

Figure 3-5 The user’s name displayed in the label

oy TextBox Demo — O X

Enter your name: |Kathryn Smith

You entered: Kathryn Smith

Read Input Exit



Visual Programming in C# Asst. Lect. Ahmed A. Idris

Lecture - 3 a5 Computer Science Department
ROy
S0 e 5 3
Variables

A variable is a storage location in memory that is represented by a name.

For example, a program that manages a company’s customer mailing list might use a variable
named lastName to hold a customer’s last name, a variable named firstName to hold the
customer’s first name, a variable named address to hold the customer’s mailing address, and so
forth.

In C#, you must declare a variable in a program before you can use it to store data. You do

this with a variable declaration, which specifies two things about the variable:

The variable’s data type, which is the type of data the variable will hold The variable’s

name A variable declaration statement is written in this general format:

DataType VariableName;

Data Type

A variable’s data type indicates the type of data that the variable will hold.

The C# language provides many data types for storing fundamental types of data, such as

strings, integers, and real numbers. These data types are known as primitive data types.
Variable Name

A variable name identifies a variable in the program code. When naming a variable, you

should always choose a meaningful name that indicates what the variable is used for.

Note: The same rules for identifiers that apply to control names also apply to

variable names.



Visual Programming in C#
Lecture - 3

Asst. Lect. Ahmed A. Idris
Computer Science Department

String Concatenation

In C# you use the + operator to concatenate strings. The + operator produces a string that

is the combination of the two strings used as its operands.

string message;
message = "Hello " + "world";
MessageBox.Show(message) ;

When the message box is displayed, it shows the string Hello world.

Let’s look at an application that further demonstrates string concatenation. Figure 3-6
shows the form, with most of the control names specified, and Figure 3-7 shows the

form’s code.



Visual Programming in C# i Asst. Lect. Ahmed A. Idris

Lecture - 3 G5 Computer Science Department
Sz

Figure 3-6 The String Variable Demo application

' R
o String Variable Demo l o | & lé
Erter your first name: | - firstNameTextBox
Enter your last name: - lastNameTextBox
This is your full name: | f‘ fullNameLabel
| Show Name | |  Bdt |
k 1 Ly J

/ \

showNameButton exitButton

Figure 3-7 The form’s code (excluding the using directives)

-Inamespace String_Variable_Demo

{
= public partial class Forml : Form
{
El public Forml()
{
InitializeComponent();
}

= private void showNameButton_Click(object sender, EventArgs e)

{
'/ Declare a string variable to hold the full name.
®—> string fullName;

// Combine the names, with a space between them. Assign the
/ result to the fullName variable.
@—> fullName = firstNameTextBox.Text + " " + lastNameTextBox.Text;

// Display the fullName variable in the fullNamelabel control.
®—> fullNamelabel.Text = fullName;

¥
= private void exitButton_Click(object sender, EventArgs e)
{
// Close the form.
this.Close();
¥




Visual Programming in C# s Asst. Lect. Ahmed A. Idris

JLAEQN
Lecture - 3 Computer Science Department

el

W

If you run the application, Figure 3-8 shows an example of how the form appears after you
have entered Chris for the first name and Jones for the last name and clicked the

showNameButton control.

Figure 3-8 The user’s full name displayed in the label

oy String Variable De... — X

Enter your first name: Chris

Enter your last name: Jones

This is your full name: Chris Jones

Show Name Exit

(rfTh
r

Local Variables

Variables that are declared inside a method are known as local variables. A local variable
belongs to the method in which it is declared, and only statements inside that method can

access the variable.



Asst. Lect. Ahmed A. Idris
Computer Science Department

Visual Programming in C#
Lecture - 3

A

‘g}}i{

An error will occur if a statement in one method tries to access a local variable that

belongs to another method. For example, the sample code shown in Figure 3-9:

Figure 3-9 One method trying to access a variable that is local to another method

private void firstButton_Click(object sender, e)
1
Declare a string variable.

®—> string myName;

Assign the nameTextBox control's Text property
// to the myName variable.
@—> myName = nafreTextBox.Text;
}
private void secondButton_Click(object sender, e)
{
Assign the myName variable to the cutputLabel

[/ control's Text property.
@—» outputLabel.Text = myName; -«———— — ERRORI
1

J

The Birth Date String Application

create an application that lets the user enter the following information about his or her

birthdate:

The day of the week (Monday, Tuesday, etc.)
The name of the month (January, February, etc.)
The numeric day of the month

The year

Figure 3-10 shows the application’s form, along with the names of all the controls.

10



Asst. Lect. Ahmed A. Idris
Computer Science Department

Visual Programming in C#
Lecture - 3

Figure 3-10 Birth date application

Form1.cs [Design] = |

i

| 85 Birth Date String

dayOfWeekPromptLabel —T—{—— Enterthe day of the week dayOfWeekTextBox
monthPromptLabel ——+———® Enterthe name of the month monthTextBox

dayOfmonthPromptLabel — i Enterthe numeric day of the month dayOfMonthTextBox
yearPromptLabel p Enter the year yearTextBox

| |<+— dateOutputLabel

Show Date Clear Exit

A S—
/] \

showDateButton clearButton exitButton

Control Name Control Type Property Settings
dayOfwWeekPromptLabel Label Text: Enter the day of the week
monthPromptLabel Label Text: Enter the name of the month
dayOfMonthPromptLabel Label Text: Enter the numeric day of the month
yearPromptLabel Label Text: Enter the year
dayOfWeekTextBox TextBox No properties changed
monthTextBox TextBox No properties changed
dayOfMonthTextBox TextBox No properties changed
yearTextBox TextBox No properties changed

AutoSize: False

BorderStyle: FixedSingle

dateOutputLabel Label
Text: (The contents of the Text property have been erased.)
TextAlign: MiddleCenter

showDateButton Button Text: Show Date

clearButton Button Text: Clear

exitButton Button Text: Exit

11



Asst. Lect. Ahmed A. Idris
Computer Science Department

Visual Programming in C#

Py
Lecture - 3 5

wi
The form will appear as shown in the image on the left in Figure 3-11

Figure 3-11 The Birth Date String application

us Birth Date String _— O X a5 Birth Date String — O X

Enter the day of the week Enter the day of the week |Fn'day

I
Enter the name of the month |
|
|

Enter the numeric day of the month

|
Enter the name of the month |June |
|
|

|
|
| Enter the numeric day of the month |1
|

Enter the year Enter the year | 1990
Friday, June 1, 1990
Show Date Clear Exit Clear Exit

S

Declaring Multiple Variables with One Statement

You can declare multiple variables of the same data type with one declaration statement.

Here is an example:

string lastName, firstName, middleName;

Numeric Data Types and Variables

If you need to store a number in a variable and use that number in a mathematical
operation, the variable must be of a numeric data type. Table 3.1 shows the primitive

numeric data types.

12



Asst. Lect. Ahmed A. Idris
Computer Science Department

Visual Programming in C#
Lecture - 3

Table 3.1 The primitive numeric data types that you will use most often

Data Type Description

int A variable of the int data type can hold whole numbers only. For
example, an int variable can hold values such as 42, 0, and —99. An

int variable cannot hold numbers with a fractional (s _~S) part, such

as 22.1 or —4.9.

double A variable of the double data type can hold real numbers, such as 3.5,
—87.95, or 3.0. A number that is stored in a double variable is

rounded to 15 digits of precision.

Here are examples of declaring variables of each data type:

int speed;
double distance;

Declaring Local Variables with the var Keyword

C# provides an alternative way to declare local variables, using the var keyword and an

initialization value. Here is an example:

var amount = 100;

Notice that this statement uses the word var instead of a data type. The var keyword tells

the compiler to determine the variable’s data type from the initialization value.

13



Asst. Lect. Ahmed A. Idris
Computer Science Department

Visual Programming in C#
Lecture - 3

var age = 30
var user_name = “Ahmed”

var avarage = 89.5;
Inputting and Qutputting Numeric Values

If the user has entered a number into a TextBox, the number will be stored as a string in the
TextBox’s Text property. If you want to store that number in a numeric variable, you have
to convert it to the appropriate numeric data type. When you want to display the value of a

numeric variable in a Label control or a message box, you have to convert it to a string.
Getting a Number from a TextBox

Any data that the user enters into a TextBox control is stored in the control’s Text property
as a string, even if it is a number. For example, if the user enters the number 72 into a

TextBox control, the input is stored as the string "72" in the control’s Text property.
The Parse methods are used to convert a string to a specific data type.

We use the int.Parse method to convert a string to an int.

We use the double.Parse method to convert a string to a double.

We use the decimal.Parse method to convert a string to a decimal.

Figure 3-12 illustrates this concept using the int.Parse method as an example.

14



Visual Programming in C#
Lecture - 3

Figure 3-12 The int.Parse method

Asst. Lect. Ahmed A. Idris
Computer Science Department

Argument
(the string you want to convert)

An int value is returned = int.Parse (string)

The following code sample shows how to use the int.Parse method to convert a control’s

Text property to an int. Assume that hoursWorkedTextBox is the name of a TextBox

control. Figure 3-13 illustrates this process.
int hoursWorked,;
hoursWorked = int.Parse(hoursWorked TextBox.Text);

Figure 3-13 Converting TextBox input to an int

The user enters 40 into the
hoursWorkedTextBox control.

o — O X
Enter the number of hours worked: |40 The string "40" is stored
in the control's Text
property.
" 4 O "
40 ‘
hoursWorked = int.Parse (hoursWorkedTextBox.Text) ;

The int value 40 is returned
from the int.Parse method
and assigned to the hoursWorked
variable.

15



