
University of Al-Hamdaniya College of Education for Pure Sciences

Dr. Mohammed Alkhuzaie Lecture2 of Web design 2025-2026

Foundations of Web Architecture and Protocols

1. Introduction: The Landscape of Web Technologies

This lecture serves as a foundational overview of the architectural principles and core

technologies that underpin modern web and mobile applications. Our objective is to

establish a common lexicon and a conceptual framework for understanding how these

technologies are structured and interact. It is not an exhaustive taxonomy but rather a

curated introduction, designed to provide a solid starting point for further exploration

and a shared language for technical discourse.

2. The Architectural Backbone: The Client-Server Model & HTTP

At its core, the internet operates on a client-server model, a distributed communication

framework where clients initiate requests and servers provide responses.

 Client: Typically, a web browser on a user's device.

 Server: A dedicated machine (e.g., running a service like Apache Tomcat) that hosts

resources and services.

For machines to communicate effectively, they rely on standardized languages known

as protocols. These protocols are organized in layers, collectively known as the internet

protocol suite. Our focus resides at the uppermost layer: the Application Layer.

Among the various application protocols (such as FTP, SSH, and POP), the Hypertext

Transfer Protocol (HTTP) is the principal protocol for disseminating web resources.

The Anatomy of HTTP Communication

HTTP is a stateless, text-based protocol. Its transactions are composed of defined

structures for requests and responses.

University of Al-Hamdaniya College of Education for Pure Sciences

Dr. Mohammed Alkhuzaie Lecture2 of Web design 2025-2026

 An HTTP Request comprises:

o Request Line: Specifies the HTTP method (e.g., GET, POST), the target URL, and the HTTP

version.

o Header: Contains metadata about the request (e.g., Host, User-Agent, Content-Type).

o Body (Optional): Carries data sent to the server, often from form submissions.

 An HTTP Response comprises:

o Status Line: Indicates the HTTP version, a numerical Status Code, and a descriptive

phrase.

o Header: Conveys metadata about the response (e.g., Content-Type, Set-Cookie).

o Body: Typically contains the requested resource, such as an HTML document.

3. Decoding HTTP Semantics: Status Codes and Methods

3.1. HTTP Status Codes

These codes are essential for understanding the outcome of a request. Their first digit

groups them:

 2xx (Success): The request has successfully received and processed.

o 200 OK: The standard success response.

 4xx (Client Error): The request contains bad syntax or cannot be fulfilled.

o 401 Unauthorized: Authentication is required.

o 403 Forbidden: The server refuses to act.

o 404 Not Found: The requested resource is unavailable.

 5xx (Server Error): The server failed to fulfill a valid request.

o 500 Internal Server Error: A generic server-side error.

o 504 Gateway Timeout: A server acting as a gateway timed out.

University of Al-Hamdaniya College of Education for Pure Sciences

Dr. Mohammed Alkhuzaie Lecture2 of Web design 2025-2026

3.2. HTTP Methods (Verbs)

Methods define the desired action to be performed on a resource.

 GET: Retrieves data from the server. It is safe (no server-side changes) and should not

have a body.

 POST: Submits data to the server to create a new resource (e.g., a new database entry). It

is neither safe nor idempotent.

 PUT: Replaces an existing resource with the request payload. It is idempotent (repeated

identical requests have the same effect as a single request).

 DELETE: Removes a specified resource. It is idempotent.

Adherence to these semantic guidelines is a matter of software design discipline, often

enforced by coding standards, as exemplified by auto-generated frameworks like Grails.

4. Architectural Style: Representational State Transfer (REST)

REST is an architectural style for designing networked applications, particularly web

services. It is a set of constraints rather than a strict protocol.

Core RESTful Constraints:

 Client-Server: A clear separation of concerns. The client handles the user interface, while

the server manages data storage, improving portability and scalability.

 Stateless: Each request from a client must contain all the information necessary for the

server to understand it. No client context is stored on the server between requests.

 Uniform Interface: This simplifies architecture and includes:

o Resource Identification: Resources (e.g., a user, an order) are identified in requests

(typically via URIs).

o Self-Descriptive Messages: Each message contains enough information to describe how

to process it.

University of Al-Hamdaniya College of Education for Pure Sciences

Dr. Mohammed Alkhuzaie Lecture2 of Web design 2025-2026

In practice, RESTful services use a base URI, standard HTTP methods, and data formats

like JSON or XML. This architecture promotes scalability and visibility.

Practical Deviations from Pure REST:

While ideal, pure statelessness is sometimes relaxed for pragmatic reasons. For instance,

to maintain user login sessions without transmitting credentials repeatedly, a session

ID is often stored on the client and referenced on the server, a concept facilitated by

cookies.

5. State Management in a Stateless Protocol: HTTP Cookies

HTTP's stateless nature poses a challenge for applications that require persistent state

across requests (e.g., shopping carts, user logins). Cookies solve this by allowing a server

to instruct the client to store small pieces of data.

The Cookie Workflow:

1. The server includes a Set-Cookie header in its response.

2. The client's browser stores this key-value pair, associating it with the server's domain.

3. On every subsequent request to that domain, the browser automatically attaches the

cookie in the Cookie header.

4. The server reads this cookie to retrieve state information, such as a session ID, which it

can use to look up more extensive session data stored on the server-side.

This mechanism enables the illusion of a continuous session while keeping the heavy state

data on the server, balancing functionality, security, and performance.

