
Visual Programming in C#
Lecture - 2 	

	
Asst. Lect. Ahmed A. Idris

Computer Science Department
	 	
	 	

	 1	

Creating the GUI for Your First Visual C# Application

In this chapter you will create your first Visual C# application, which will be an event-

driven program. This section introduces you to Visual C# code and shows how to program

an application to respond to button clicks.

A file that contains program code is called a source code file. When you start a C#

Windows Forms Application project, Visual Studio automatically creates several source

code files and adds them to the project. If you look at the Solution Explorer, as shown in

Figure 2-1, you will see the names of two source code files: Form1.cs and Program.cs.

(C# source code files always end with the .cs extension.)

Figure 2-1 Source code files shown in the Solution Explorer

The Program.cs file holds the application’s startup code and handles essential

initialization. Modifying it may prevent the application from running.

The Form1.cs file contains the code associated with the Form1 form. Any actions or

behaviors related to Form1, such as responding to button clicks or other user interactions,

are implemented in this file.

Visual Programming in C#
Lecture - 2 	

	
Asst. Lect. Ahmed A. Idris

Computer Science Department
	 	
	 	

	 2	

The Code Editor

It will be helpful for you to know how this code is organized, however, because later you

will add your own code to this file. C# code is primarily organized in three ways, as shown

in the Figure 2-2:

A namespace is a container that holds classes.

A class is a container that holds methods (among other things).

A method is a group of one or more programming statements that performs

some operation.

Figure 2-2 Organization of the Form1.cs code

Visual Programming in C#
Lecture - 2 	

	
Asst. Lect. Ahmed A. Idris

Computer Science Department
	 	
	 	

	 3	

• C# applications use the .NET Framework, with code organized into namespaces indicated by using
directives.

• The namespace Hello_World { } block defines a namespace for the project.

• The public partial class { } block defines a class and its contents.

• The public Form1() { } block defines a method and its code.

Code containers (namespaces, classes, methods) use paired braces { } to enclose their code , as seen in
Figure 2-3.

Figure 2-3 Corresponding braces

Switching Between The Code Editor And The Designer

The code editor and Designer share the same window, and you can switch between them

using tabs like Form1.cs, As shown in the Figure 2-4.

Visual Programming in C#
Lecture - 2 	

	
Asst. Lect. Ahmed A. Idris

Computer Science Department
	 	
	 	

	 4	

Figure 2-4 Code editor and Designer tabs

Adding Your Own Code To A Project

Suppose you have created a project named Code Demo and set up the project’s form with

a Button control, as shown in Figure 2-5. The Button control’s Name is myButton, and its

Text property is set to Click Me!.

Visual Programming in C#
Lecture - 2 	

	
Asst. Lect. Ahmed A. Idris

Computer Science Department
	 	
	 	

	 5	

Figure 2-5 A form with a Button control

Suppose you want the application to display the message Thanks for clicking the button!

when the user clicks the button. To accomplish that, you need to write a special type of

method known as an event handler. An event handler is a method that executes when a

specific event takes place while an application is running.

To create the event handler, you double-click the myButton control in the Designer. This

opens the Form1.cs file in the code editor, as shown in Figure 2-6, with some new code

added to it.

Visual Programming in C#
Lecture - 2 	

	
Asst. Lect. Ahmed A. Idris

Computer Science Department
	 	
	 	

	 6	

Figure 2-6 The code window opened with event handler code generated

At this point, you need to understand only the following concepts:

• Event handler names follow the convention controlName_Event, e.g., myButton_Click for a Click
event on myButton.

• Visual Studio generates an empty event handler { } where you add the code to run when the event
occurs. See the Figure 2-7.

controlName_Event	

Visual Programming in C#
Lecture - 2 	

	
Asst. Lect. Ahmed A. Idris

Computer Science Department
	 	
	 	

	 7	

Figure 2-7 A closer look at the event handler code

Message Boxes

A message box is a small window, sometimes referred to as a dialog box, that displays a

message. Figure 2-8 shows an example of a message box displaying the message Thanks

for clicking the button! Notice that the message box also has an OK button. When the user

clicks the OK button, the message box closes.

Figure 2-8 A message box

Visual Programming in C#
Lecture - 2 	

	
Asst. Lect. Ahmed A. Idris

Computer Science Department
	 	
	 	

	 8	

The .NET Framework provides a method named MessageBox.Show that you can use in

Visual C# to display a message box. If you want to execute the MessageBox.Show

method, you write a statement known as a method call.

The following statement shows an example of how you would call the MessageBox.Show

method to display the message box shown in Figure 2-8:

When using the MessageBox.Show method in C#, three key elements must be considered:

1- String: The message to be displayed is written as a string inside parentheses.

2- Quotation Marks: The string must be enclosed in double quotation marks (" ").

3- Semicolon: Each statement ends with a semicolon (;), which marks the end of the

instruction in C#.

After typing the statement as shown in the Figure 2-9 and When the application runs, it

will display the form shown in Figure 2-10.

Visual Programming in C#
Lecture - 2 	

	
Asst. Lect. Ahmed A. Idris

Computer Science Department
	 	
	 	

	 9	

Figure 2-9 Event handler code for displaying a message box

Visual Programming in C#
Lecture - 2 	

	
Asst. Lect. Ahmed A. Idris

Computer Science Department
	 	
	 	

	 10	

Figure 2-10 The Code Demo project running

Multiple Buttons with Event Handlers

The form shown in Figure 2-11 has three Button controls. The controls are named

firstButton, secondButton, and thirdButton.

Figure 2-11 A form with multiple Button controls

Visual Programming in C#
Lecture - 2 	

	
Asst. Lect. Ahmed A. Idris

Computer Science Department
	 	
	 	

	 11	

To create Click event handlers for the buttons, you simply double-click each Button

control in the Designer and an empty event handler will be created in the form’s source

code file. The names of the Click event handlers will be firstButton_Click,

secondButton_Click, and thirdButton_Click. Figure 2-12 shows an example of the form’s

source code after the three event handlers have been created and a MessageBox.Show

statement has been added to each one.

Figure 2-12 Source code with three Click event handlers

Visual Programming in C#
Lecture - 2 	

	
Asst. Lect. Ahmed A. Idris

Computer Science Department
	 	
	 	

	 12	

Exercise: Build a C# Windows Forms application that displays the message “Hello,

World” upon clicking a button labeled “Press Here!”.

Label Controls

A Label control displays text on a form and used to display unchanging text, or program

output. When you want to display text on a form, you use a Label control. Figure 2-13

shows an example of a form with two Label controls.

Figure 2-13 A form with Label controls

When a Label control is created, it is automatically assigned a default name (e.g., label1,

label2). Initially, the control’s Text property matches its name, causing the label to display

that name by default. The Text property can be modified through the Properties window in

the Designer to display custom text, such as “Programming in Visual C# is fun!”, as

shown in the Figure 2-14.

Visual Programming in C#
Lecture - 2 	

	
Asst. Lect. Ahmed A. Idris

Computer Science Department
	 	
	 	

	 13	

Figure 2-14 A Label control displaying a message

The Font Property

To change the appearance of a Label control’s text in C#, you can modify its Font

property. This property lets you set the font type, style, and size, as shown in Figure Figure

2-15. By clicking the ellipses button next to the Font property in the Properties window, a

Font dialog box opens, allowing you to select the desired attributes shown in the Figure 2-

16. Once confirmed, the Label’s text updates to reflect the chosen font settings, see the

Figure 2-17.

Font: Lucida Handwriting

Font Style: Italic

Size: 10 point

Visual Programming in C#
Lecture - 2 	

	
Asst. Lect. Ahmed A. Idris

Computer Science Department
	 	
	 	

	 14	

Figure 2-15 The Font property

Figure 2-16 The Font dialog box

Visual Programming in C#
Lecture - 2 	

	
Asst. Lect. Ahmed A. Idris

Computer Science Department
	 	
	 	

	 15	

Figure 2-17 A label’s appearance with altered font attributes

The BorderStyle Property

The BorderStyle property of a Label control determines the appearance of its border. It can

be set to None (no border), FixedSingle (thin border), or Fixed3D (recessed 3D look), see

the Figure 2-18. These settings affect how the label appears both in the Designer and at

runtime, Figure 2-19.

Visual Programming in C#
Lecture - 2 	

	
Asst. Lect. Ahmed A. Idris

Computer Science Department
	 	
	 	

	 16	

Figure 2-18 BorderStyle selections

Figure 2-19 BorderStyle examples

Visual Programming in C#
Lecture - 2 	

	
Asst. Lect. Ahmed A. Idris

Computer Science Department
	 	
	 	

	 17	

Using Code to Display Output in a Label Control

In addition to displaying unchanging text on a form, Label controls are also useful for

displaying output while an application is running.

In programming, an assignment statement is used to store a value in a control’s property.

For instance, in the statement:

The assignment operator (=) assigns the string value on the right to the Text property of

the outputLabel control. When executed, this results in the specified text being displayed

within the label on the form. Let’s create an application that displays a capital city

question and reveals the answer when the user clicks a button. As shown in the Figure 2-

20.

Figure 2-20 Capital City Question

Visual Programming in C#
Lecture - 2 	

	
Asst. Lect. Ahmed A. Idris

Computer Science Department
	 	
	 	

	 18	

As shown in the figure, the form has the three controls:

A Label control named questionLabel. This label displays the capital question.

A Label control named answerLabel. This label initially appears empty, but will be used

to display the answer to the capital question.

A Button control named showAnswerButton. When the user clicks this button, the

answer to the capital question is displayed.

In the code editor, we see the code shown in Figure 2-21.

Figure 2-21 Form1.cs code

Visual Programming in C#
Lecture - 2 	

	
Asst. Lect. Ahmed A. Idris

Computer Science Department
	 	
	 	

	 19	

When you run the application, the form appears as shown on the left in Figure 2-22. Click

the Show the Answer button and the answer to the capital question appears as shown on

the right in the figure.

Figure 2-22 The capital application running

The Text Property Accepts Strings Only

The Label control’s Text property can accept strings only. You cannot assign a number to

the Text property.

The following statement will cause an error because it is attempting to store the number 5

in the resultLabel control’s Text property:

Visual Programming in C#
Lecture - 2 	

	
Asst. Lect. Ahmed A. Idris

Computer Science Department
	 	
	 	

	 20	

This does not mean that you cannot display a number in a label, however. If you put

quotation marks around the number, it becomes a string. The following statement will

work:

Clearing a Label

In code, if you want to clear the text that is displayed in a Label control, simply assign an

empty string ("") to the control’s Text property, as shown here:

Exercise: The Language Translator application, see the Figure 2-23.

Figure 2-23: The Language Translator application

