i

PSRN

el

aﬁi &
s

Asst. Lect. Ahmed A. Idris
Computer Science Department

Visual Programming in C#
Lecture - 2

Creating the GUI for Your First Visual C# Application

In this chapter you will create your first Visual C# application, which will be an event-
driven program. This section introduces you to Visual C# code and shows how to program

an application to respond to button clicks.

A file that contains program code is called a source code file. When you start a C#

Windows Forms Application project, Visual Studio automatically creates several source
code files and adds them to the project. If you look at the Solution Explorer, as shown in
Figure 2-1, you will see the names of two source code files: Form1.cs and Program.cs.

(C# source code files always end with the .cs extension.)

Figure 2-1 Source code files shown in the Solution Explorer

Solution Explorer v+ 0 X
@l o-s¢am
Search Solution Explorer (Ctrl+ P~

fa] Solution 'Hello World' (1 project)

4 Hello World
b Properties
p =W References

¥ App.config Form1.cs contains code associatied with the Form1 form.
b EZ] Forml.cs 4—//
P ©* Program.cs \
Program.cs contains the application’s startup code.

The Program.cs file holds the application’s startup code and handles essential

initialization. Modifying it may prevent the application from running.

The Forml.cs file contains the code associated with the Form1 form. Any actions or
behaviors related to Form1, such as responding to button clicks or other user interactions,

are implemented in this file.

Visual Programming in C# { \ Asst. Lect. Ahmed A. Idris

LN
Lecture - 2 Computer Science Department

%i &
W

The Code Editor

It will be helpful for you to know how this code is organized, however, because later you
will add your own code to this file. C# code is primarily organized in three ways, as shown

in the Figure 2-2:
A namespace is a container that holds classes.
A class is a container that holds methods (among other things).

A method is a group of one or more programming statements that performs

some operation.

Figure 2-2 Organization of the Forml.cs code

using System;
using System.Collections.Generic;
using System.ComponentModel;

using System.Data;
—— using System.Drawing;
using System.Ling;

using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;

namespace Hello_World
{
public partial class Forml : Form
{
@ public Forml()
— {
InitializeComponent();
}
B
}

i

PSRN

el

Asst. Lect. Ahmed A. Idris
Computer Science Department

Visual Programming in C#
Lecture - 2

%“ &
W

e C# applications use the NET Framework, with code organized into namespaces indicated by using
directives.

e The namespace Hello World { } block defines a namespace for the project.
e The public partial class { } block defines a class and its contents.
e The public Forml () { } block defines a method and its code.

Code containers (namespaces, classes, methods) use paired braces { } to enclose their code , as seen in

Figure 2-3.

Figure 2-3 Corresponding braces

namespace Hello World

_®

public partial class
public Forml()

InitializeComponent();

%)
®{D

Switching Between The Code Editor And The Designer

The code editor and Designer share the same window, and you can switch between them

using tabs like Form1.cs, As shown in the Figure 2-4.

Asst. Lect. Ahmed A. Idris
Computer Science Department

Visual Programming in C#
Lecture - 2

Figure 2-4 Code editor and Designer tabs

w Hello World - Microsoft Visual Studio
File Edit View Project Builld Debug Team Tools Test
< I ‘ B2 WM ‘ - v‘ Debug ~ AnyCPU
? Forml.cs + X Ran i< 0= 00)
Q
4 Hel® World vl #3 Hello_World.Form1 v| ¢
% -lusing System
’ using System.Collections.Generic;
=t using System.CpmponentModel;
g: using System.Data;
2 using System.Drawing;
using System.Lingy
using System.Text;
using System.Threading.Tasks;
| using System.Windows.Forms;
Code editor tab Designer tab

Adding Your Own Code To A Project

Suppose you have created a project named Code Demo and set up the project’s form with
a Button control, as shown in Figure 2-5. The Button control’s Name is myButton, and its

Text property is set to Click Me!.

Asst. Lect. Ahmed A. Idris
Computer Science Department

Visual Programming in C#
Lecture - 2

Figure 2-5 A form with a Button control

n Code Demo - Microsoft Visual Studio X' £ | Quick Launch (Ctrl+Q) fd — =
File Edit View Project Build Debug Team Format Tools Test Analyze Window Help Tony Gaddis ~
0| B -2 8|9 | Debug - AnycPU - psate| M _Ef|= =T 0 | I

Forml.cs [Design]* + X ¥ | Solution Explorer

@ o-5¢CFB|
a5 Code Demo | (= | Search Solution Explorer (Ctrl+;)

110|dx3 wea)

faJ Solution 'Code Demo' (1 project)
4 Code Demo
b S Properties
p =W References
¢) App.config
4 [Z) Formlcs
b) Form1.Designer.cs
) Form1l.resx
b #z Form1

X0Q|oo| 592.n0S eje(] (RS

Properties

Form1 System.Windows.Forms.Form

N A

SizeGripStyle Auto
StartPosition WindowsDefaul
Tag

Text Code Demo
TopMost False

TransparencyKey |:|

Text
The text associated with the control.

Suppose you want the application to display the message Thanks for clicking the button!
when the user clicks the button. To accomplish that, you need to write a special type of
method known as an event handler. An event handler is a method that executes when a

specific event takes place while an application is running.

To create the event handler, you double-click the myButton control in the Designer. This
opens the Form1.cs file in the code editor, as shown in Figure 2-6, with some new code

added to it.

Visual Programming in C# ;;\\ Asst. Lect. Ahmed A. Idris
Lecture - 2 £ Computer Science Department

% o
‘Q-Jg

Figure 2-6 The code window opened with event handler code generated

n Code Demo - Microsoft Visual Studio X & |QuickLaunch (Ctrl+Q) Pl - A x
File Edit View Project Build Debug Team Tools Test Analyze Window Help Tony Gaddis ~
PO | @ -2 M9 | Debug - AnyCPU - pStatv | i E|= 2N =

Forml.cs® + X iR Solution Explorer
[v8] Code Demo 'I #3 Code_Demo.Form1 -I ®, myButton_Click(object sen ~ SEA | -5 ¢ FE ‘
using System.Windows.Forms;

sa2unos ejeq B

Search Solution Explorer (Ctrl+;)

1210|dx3 wea|

Elnamespace Code_Demo] Solution 'Code Demo' (1 project)
{ 4 (@] Code Demo
Bl public partial class Forml : Form b ¥ Properties
{ ‘B Ref
Bl public Forml() bt erence.s
¢ App.config

{ InitializeComponent(); 4 [E] Forml.cs

} b T3 Form1.Designer.cs
) Forml.resx

private void myButton_Click(object sender, EventArgs b #z Forml

{ I

}

X0q|oo]

This code was automatically added.

At this point, you need to understand only the following concepts:

e Event handler names follow the convention controlName_Event, e.g., myButton Click for a Click
event on myButton.

controlName_Event

e Visual Studio generates an empty event handler { } where you add the code to run when the event
occurs. See the Figure 2-7.

Visual Programming in C#
Lecture - 2

Asst. Lect. Ahmed A. Idris
Computer Science Department

Figure 2-7 A closer look at the event handler code

The event handler's name

|
private void myButton Click(object sender, e)

{

| =

Your code goes here, between the braces.

Message Boxes

A message box is a small window, sometimes referred to as a dialog box, that displays a
message. Figure 2-8 shows an example of a message box displaying the message Thanks

for clicking the button! Notice that the message box also has an OK button. When the user

clicks the OK button, the message box closes.

Figure 2-8 A message box

Thanks for clicking the button!

OK

Asst. Lect. Ahmed A. Idris
Computer Science Department

Visual Programming in C#
Lecture - 2

The NET Framework provides a method named MessageBox.Show that you can use in

Visual C# to display a message box. If you want to execute the MessageBox.Show

method, you write a statement known as a method call.

The following statement shows an example of how you would call the MessageBox.Show

method to display the message box shown in Figure 2-8:

MessageBox.Show("Thanks for clicking the
button!");

When using the MessageBox.Show method in C#, three key elements must be considered:

1- String: The message to be displayed is written as a string inside parentheses.
2- Quotation Marks: The string must be enclosed in double quotation marks (" ").
3- Semicolon: Each statement ends with a semicolon (;), which marks the end of the

instruction in C#.

After typing the statement as shown in the Figure 2-9 and When the application runs, it

will display the form shown in Figure 2-10.

Visual Programming in C# s Asst. Lect. Ahmed A. Idris

JLAEQN
Lecture - 2 Computer Science Department

el

W

Figure 2-9 Event handler code for displaying a message box

Forml.cs & X GIRIRES IR

Code Demo - I #3 Code_Demo.Form1 - I 9. myButton_Click(object se
N —lusing System; ‘
using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Ling;

using System.Text;

using System.Threading.Tasks;

using System.Windows.Forms;

~Inamespace Code_Demo

ﬂ{ public partial class Forml : Form
{
- public Forml()
{
InitializeComponent();
| }
El private void myButton_Click(object sender, EventArgs e)
: MessageBox.Show("Thanks for clicking the button!");l
}
I }
}

Th
[
LHJ

o
LN
iy

Asst. Lect. Ahmed A. Idris
Computer Science Department

Visual Programming in C#
Lecture - 2

W

Figure 2-10 The Code Demo project running

85 Code Demo — O X X

Thanks for clicking the button!
ick Me!

When you click this button... /
this window will appear.

Multiple Buttons with Event Handlers

oK

The form shown in Figure 2-11 has three Button controls. The controls are named

firstButton, secondButton, and thirdButton.

Figure 2-11 A form with multiple Button controls

Form1.cs [Design* -+ |

a5’ Multiple Buttons (|| (S

First Button Second Button Third Button

/ ! AN

/ ... pr— \‘J

firstButton secondButton thirdButto=

10

Visual Programming in C#

Lecture - 2

Asst. Lect. Ahmed A. Idris
Computer Science Department

W

To create Click event handlers for the buttons, you simply double-click each Button

control in the Designer and an empty event handler will be created in the form’s source

code file. The names of the Click event handlers will be firstButton Click,

secondButton_Click, and thirdButton_Click. Figure 2-12 shows an example of the form’s

source code after the three event handlers have been created and a MessageBox.Show

statement has been added to each one.

Figure 2-12 Source code with three Click event handlers

using
using
using
using
using
using
using
using
using

{
{

System;
System.Collections.Generic;
System.ComponentModel;
System.Data;
System.Drawing;
System.Ling;

System.Text;
System.Threading.Tasks;
System.Windows.Forms;

namespace Multiple_Buttons

public partial class Forml :

pub%;c Forml1()
{

InitializeComponent()

}

private void firstButton_Click(object sender, EventArgs e)

{

MessageBox.Show("You clicked the first button.");

}

private void secondButton_Click(object sender, EventArgs e)

{

MessageBox.Show("You clicked the second button."); for secondButton

}

private void thirdButton_Click(object sender, EventArgs e)

{

MessageBox.Show("You clicked the third button.™); for thirdButton

}

Form

B

Click event handler
for firstButton

Click event handler

Click event handler

an
n
[

11

e

PRGN
YA AN
LT

Asst. Lect. Ahmed A. Idris
Computer Science Department

Visual Programming in C#
Lecture - 2

% &
s

Exercise: Build a C# Windows Forms application that displays the message “Hello,

World” upon clicking a button labeled “Press Here!”.
Label Controls

A Label control displays text on a form and used to display unchanging text, or program
output. When you want to display text on a form, you use a Label control. Figure 2-13

shows an example of a form with two Label controls.

Figure 2-13 A form with Label controls

Form1.cs [Design] = |

a5 Wage Calculator = Eoh <™

1y~ Number of Hours Worked
Label controls <]

T Hourly Pay Rate

Calculate :
Gross Pay bt

When a Label control is created, it is automatically assigned a default name (e.g., labell,
label2). Initially, the control’s Text property matches its name, causing the label to display
that name by default. The Text property can be modified through the Properties window in
the Designer to display custom text, such as “Programming in Visual C#is fun!”, as

shown in the Figure 2-14.

12

Visual Programming in C# k Asst. Lect. Ahmed A. Idris

AN
Lecture - 2 Computer Science Department

P

% &
s

Figure 2-14 A Label control displaying a message

Forml.cs [Design]* & X

r7 S — S

a5 Forml =u EON X

o .
Programming in Visual CRis fun!

I
| et

-"|

The Font Property

To change the appearance of a Label control’s text in C#, you can modify its Font
property. This property lets you set the font type, style, and size, as shown in Figure Figure
2-15. By clicking the ellipses button next to the Font property in the Properties window, a
Font dialog box opens, allowing you to select the desired attributes shown in the Figure 2-
16. Once confirmed, the Label’s text updates to reflect the chosen font settings, see the

Figure 2-17.
Font: Lucida Handwriting
Font Style: Italic

Size: 10 point

13

Visual Programming in C#

aaaaaaaaa

Asst. Lect. Ahmed A. Idris

Lecture - 2 %‘% Computer Science Department
et
LGy
Figure 2-15 The Font property
Properties v X
labell System.Windows.Forms.Label v
5 5
B S - Click here to change the Font property.
FlatStyle Standard
Microsoft Sans Serif, 8.25pt
ForeColor - ControlText
GenerateMember True
Image [] (none)
ImageAlign MiddleCenter
Imagelndex |:| (none) v
Font
The font used to display text in the control.
Figure 2-16 The Font dialog box
Font X
Font: Font style: Size:
Microsoft Sans Serif Regular 8 [|
icrosot Sans SerdF ~| L g
erosoft Sans en eglar 9 Cance
Microsoft YaHei Ul Obligue 10
Minion Pro Bold };
Miatacl Bold Oblique 14
Modern No. 20 v v| 16 Vv
Effects Sample
[] Strikeout TG
[[] Undedine Yy
Script:
| West v]

14

Asst. Lect. Ahmed A. Idris
Computer Science Department

Visual Programming in C#
Lecture - 2

ain
G4

The BorderStyle Property

The BorderStyle property of a Label control determines the appearance of its border. It can
be set to None (no border), FixedSingle (thin border), or Fixed3D (recessed 3D look), see
the Figure 2-18. These settings affect how the label appears both in the Designer and at

runtime, Figure 2-19.

15

Visual Programming in C#
Lecture - 2

Figure 2-18 BorderStyle selections

Properties
label1 System.Windows.Forms.Label

oD g |

vqx

AutoSize True -

BackColor Control

BorderStyle

CausesValidatio

ContextMenuStri FixedSingle

Cursor Fixed3D

Dock one

Enabled True ==
BorderStyle

Determines if the label has a visible border.

Figure 2-19 BorderStyle examples

BorderStyle setto None

| BorderStyle setto FixedSingle |

'BorderStyle setto Fixed3D

Asst. Lect. Ahmed A. Idris
Computer Science Department

Form1.cs [Design] = |

a5 BorderStyle Demo — O X

BorderStyle setto None

| BorderStyle setto FixedSingle |

| BorderStyle setto Fixed3D

16

Visual Programming in C# PN Asst. Lect. Ahmed A. Idris
Lecture - 2 Computer Science Department

Using Code to Display Output in a Label Control

In addition to displaying unchanging text on a form, Label controls are also useful for

displaying output while an application is running.

In programming, an assignment statement is used to store a value in a control’s property.

For instance, in the statement:

outputLabel.Text = "Thank you very much";

The assignment operator (=) assigns the string value on the right to the Text property of
the outputLabel control. When executed, this results in the specified text being displayed
within the label on the form. Let’s create an application that displays a capital city

question and reveals the answer when the user clicks a button. As shown in the Figure 2-

20.

Figure 2-20 Capital City Question

Form1.cs [Design] = |

a-' Question o[BS

questionLabel

What is the capital of Iraq? <a—

u)
Show the Answer answerLabel

showAnswerButton

F

17

Asst. Lect. Ahmed A. Idris
Computer Science Department

Visual Programming in C#
Lecture - 2

As shown in the figure, the form has the three controls:
A Label control named questionLabel. This label displays the capital question.

A Label control named answerLabel. This label initially appears empty, but will be used

to display the answer to the capital question.

A Button control named showAnswerButton. When the user clicks this button, the

answer to the capital question is displayed.
In the code editor, we see the code shown in Figure 2-21.

Figure 2-21 Forml.cs code

Husing System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Lling;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;

-'namespace Capital Question

{
- public partial class Forml : Form
{
= public Forml()
{
InitializeComponent();
}
= private void showAnswerButton_Click(object sender, EventArgs e)
{
answerLabel.Text = “Baghdad” ;
}
} r
L} :

18

Asst. Lect. Ahmed A. Idris
Computer Science Department

Visual Programming in C#
Lecture - 2

P ¢

When you run the application, the form appears as shown on the left in Figure 2-22. Click
the Show the Answer button and the answer to the capital question appears as shown on

the right in the figure.

Figure 2-22 The capital application running

#5 Question — O X #5 Question — O X
What is the capital of Iraq? What is the capital of Iraq?
Baghdad
| Show the Answer | Show the Answer |

The Text Property Accepts Strings Only

The Label control’s Text property can accept strings only. You cannot assign a number to

the Text property.

The following statement will cause an error because it is attempting to store the number 5

in the resultLabel control’s Text property:

resultlLabel.Text = 5 — ERROR!

e

19

Asst. Lect. Ahmed A. Idris
Computer Science Department

Visual Programming in C#
Lecture - 2

This does not mean that you cannot display a number in a label, however. If you put
quotation marks around the number, it becomes a string. The following statement will

work:

resultLabel.Text = "5";

Clearing a Label

In code, if you want to clear the text that is displayed in a Label control, simply assign an

nn

empty string ("") to the control’s Text property, as shown here:

answerLabel.Text = &

Exercise: The Language Translator application, see the Figure 2-23.
Figure 2-23: The Language Translator application

85 Language Translator - m] X 85 Language Translator - O X

Select a language and | will say Good Moming. Select a language and | will say Good Moming.

I ‘ I Buongiomo

Spanish Geman Spanish Geman
85 Language Translator - m} X 85 Language Translator - O X
Select a language and | will say Good Moming. Select a language and | will say Good Moming.
Buenos Dias] | Guten Morgen |
ltalian Geman ltalian Spanish Gemman k

20

