Assembly language

Assembly language is a low level programming language. you need to get
some knowledge about computer structure in order to understand anything.
the simple computer model as shown in figure below:

Random Access Memory

(or RAM)

Central Processing Unit System
(or CPU) 0E Bus
Devices: g

Display, Keyboard, etc...

System bus: (shown in yellow) connects the various components of a
computer.

CPU: is the heart of the computer, most of computations occur inside

the CPU.

RAM: is a place to where the programs are loaded in order to be executed.

inside the CPU

General purpose registers

8086 CPU has 8 general purpose registers, each register has its own name:

. AX - the accumulator register (divided into AH / AL).
. BX - the base address register (divided into BH / BL).
« CX - the count register (divided into CH / CL).

. DX - the data register (divided into DH / DL).

. SI - source index register.

. DI - destination index register.

. BP - base pointer.

. SP - stack pointer.

Assembly Language
Instructor: Marthed Hussein



The size of the above registers is 16 bit, it's something
like: 0011000000111001b. The programmer who determines the usage
for each general purpose registers.

4 general purpose registers (AX, BX, CX, DX) are made of two separate 8 bit
registers, for example if AX= 0011000000111001b, then
AH=00110000b and AL=00111001b, "H" is for high and "L" is for low
part.

The registers are located inside the cpu, they are much faster than memory.
accessing a memory location requires the use of a system bus, so it takes
much longer. accessing data in a register usually takes no time.

Special purpose registers

« IP - the instruction pointer.
. flags register - determines the current state of the microprocessor.

Flags register is modified automatically by CPU after mathematical
operations, this allows to determine the type of the result, and to determine
conditions to transfer control to other parts of the program.

Assembly Language instruction set (8086)

1) MOV
Copy operand?2 to operandl (operandl = operand2)
Example: MOV AL, 2

2) ADD
operandl = operandl + operand2
Example: ADD AL, BL

*Use emu8086 software to execute the instructions above.

Exercise: Add 3 to 4 to 2 by using three different general
registers. and then show your result by emu8086.

Assembly Language
Instructor: Marthed Hussein



3) Subtract.
Algorithm:
operandl = operandl - operand2
Example:

Org 1000h
MOV AL, 5
MOV BL, 2
SUB AL, BL
RET

4) Logical AND between all bits of two operands. Result is stored in
operandl.

1 AND 1
1 AND O
0 AND 1

1
0
0
OAND O =0

Example:

Org 1000h

MOV AL, 00000111b
MOV BL, 00000011b
AND AL, BL

RET

HW |
J N
AH = 00001111b, BL = 00000111b, CH = 2

Use the “Logical AND” between AH and BL, and then subtract
CH from the result of AND operation. Show your result by
emu8086.

N /

Assembly Language
Instructor: Marthed Hussein



5) Invert each bit of the operand.
Algorithm:

o if bitis 1 turnitto O.
o if bitis O turn it to 1.

Example:
MOV AL, 11111011b
NOT AL
RET

6) Logical OR between all bits of two operands. Result is stored in first
operand.

10R1=1
10R0=1
OOR1=1
OORO0=0
Example:

MOV AL, 00001010b
MOV BL, 00001111
OR AL, BL

RET

Assembly Language
Instructor: Marthed Hussein



