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Fundamental of Spatial Filtering

Filtering is a fundamental operation in image processing. It can be used for:
1 image enhancement

2 Noise reduction

3 Edge detection,

4 Sharpening.

*The concept of filtering has been applied in the:

*Frequency domain, where it rejects some frequency components while
accepting others.

-Spatial domain, Spatial filtering modifies an image by replacing the value of each
pixel with a function of the values of the pixel and its neighbors (filtering is
pixel neighborhood operation).

» Commonly used spatial filtering techniques include median, average,
Gaussian filtering, etc.
» The filtering function sometimes is called filter mask, or filter kernel.

» They can be broadly classified into two different categories :
1. Linear filtering.
2. Nonlinear filtering ( Order-statistic filters).




Spatial Domain

*An image can be represented in the form of a
2D matrix where each element of the
matrix represents pixel intensity.

*This state of 2D matrices -that depict the
sintensity  distribution of an image Is
called Spatial Domain. It can be represented as
shown below.

Illustration of Spatial Domain

 For the RGB image, the spatial domain is @

represented as a 3D vector of 2D matrices. ] e [
Each 2D matrix contains the intensities for a I s e |
single color as shown below. = =
* Each pixel intensity is represented as I(X, V) o ||
where X, y is the co-ordinate of the pixel in the T
2D matrix. Different operations are carried B u

Out i n th iS Va.l Ue . Spatial domain for color image(RGB)




Frequency Domain

*In frequency-domain methods are based on the Fourier Transform of an
Image.

*Roughly, the term frequency in an image tells about the rate of change of
pixel values.

*The tie between spatial- and frequency-domain processing is the Fourier
transform.

» We use the Fourier transform to go from the spatial

» To the frequency domain; to return to the spatial domain we use the
Inverse Fourier transform.

*The figure below depicts the
conversion of the image from the
spatial domain to the frequency
domain using Fourier

TranSfO rmatiOn. Spatial Domain Frequency Domain




Spatial Domain

*Q: Why we need a domain other than spatial domain ?

s Answer

*Many times, image processing tasks are best performed in a domain other than the
spatial domain. Moreover, it is easy to detect some features in a particular domain,
I.e., a new information can be obtained in other domains.

Image Transformation mainly follows three steps-

Transform Operation & Inverse
R transform

Step-1. Transform the image.

Step-2. Carry the task(s) in the transformed domain.

Step-3. Apply inverse transform to return to the spatial domain.



Linear Filters

A linear spatial filter performs a sum-of-products operation between animage f
and a filter kernel, w.

» The kernel is an array whose size defines the neighborhood of operation, and
whose coefficients determine the nature of the filter.

» Other terms used to refer to a spatial filter kernel are mask, template, and
window.
» We use the term filter kernel or simply kernel.

The equation below illustrates the mechanics of linear spatial filtering using a kernel.
At any point (X, y) in the image, the response, g(Xx, y), of the filter, is the sum of
products of the kernel coefficients and the image pixels encompassed by the kernel:

g(x,y)=w(-1,-Df( x1, y-D+w(—-1,0f(x—-1,y)+
e tW (0,0 F(X,y)+...+ w(,D)f(x+1,y+1)

As coordinates x and y are varied, the center of the kernel moves from pixel to
pixel, generating the filtered image, g, in the process



Linear Filters

Observe that the center coefficient Fiter kemel wisd
. . er kernel, wis,
of the kernel, w(0, 0), aligns with yl
the pixel at location (x, y). WA wi-1,0) (1.1
» For a Kkernel of size mxn. we Image, f
assume that m=2a+1 and wi0,-1)|w(0,0) | w(0.1)
n=2b+1, where a and b are wit, )| wir )it
. . .
.nunnegatwe integers. . foetyt) | foety) | oetye x
This means that our focus is on kernel coefficients
kernels of odd size in both fxy-1) f(xy) f (xy+1)
Foordmate directions. fory) | focety) | FockyH)
» In general, linear spatial
filtering of an image of size MxN “\
with a kernel of size mxn is given Pixel values under kemel Image pixel
by the E‘Xpl‘ESSiGII when it is centered on (x,y)
a The mechanics of linear spatial filtering using a kernel.

b
g(x,y) = Z Z w(s, Df(x+sy+t)

s=—at=-b
where x and y are varied so that the center (origin) of the kernel visits every
pixel in f once.



Smoothing Filters

Smoothing (also called averaging) spatial filters are used to reduce sharp transitions
In intensity.

Because random noise typically consists of sharp transitions in intensity, an obvious
application of smoothing is noise reduction.

Smoothing prior to image resampling to reduce aliasing, iIs also a common
application.

» The commonly used smoothing filters are Averaging and Median filters.
> It can be performed using the convolution operation.

M N

2 2
sGy)= Y Y hmm)f(x—my—n)
M —N

m=—g n=—p-

Where: h (m, n) is a filtering mask of size MxN.

» Each element in this filter mask usually represents the weights used in the linear
combination.



Average Filter

The average filtering is also called mean filtering. Where the output pixel value is the
mean of its neighborhood. There are two types (Standard Average and Weighted
Average) . Thus, the filtering mask is as follows (3*3 as an example).

Standard average  weighted average.
Desirable effect: the most
application of smoothing is noise
reduction, because random noise

typically consists of sharp —%
transitions in gray levels,

O |—
—
=]

Undesirable effect: the
undesirable side effect is blur . ! 1 1 2 1
edges. edges (which almost

always are desirable features of an

image) also are characterized by
sharp transitions in gray levels.

A box filter The basic strategy is




Average Filter

The following image represent the gray values of an edge. The
following example will explain the effect of standard average on it:

10 | 10 | 200 | 200 10 | 73 | 137 | 200
10 | 10 | 200 | 200 1|11 10 | 73 | 137 | 200
1
—X[1]1]1
10 | 10 [200|200| o9 N | i> 10 | 73 | 137 | 200
1|11
10 | 10 | 200 | 200 10 | 73 | 137 | 200

After applying weighted average:

10 | 10 | 200 | 200 10 | 58 | 153 | 200

10 | 10 | 200 | 200 11 2|1 10 | 58 | 153 | 200

1 i :>
— x| 21412 10 | 58 | 153 | 200

16 (41121
10 | 10 | 200 | 200 10 | s8 | 153 | 200

10 | 10 | 200 | 200

As we note applying weighted average reduce the amount of blurring on
the edaes



What happens when the Values of the Kernel Fall

Outside the Image??!

What value should these

outside pixek have?

First solution :Zero padding,

Qutside pixels are
ussumed to be 0.

1
o o o
v lw| P(W)
N
nl| s| || 6
sl 6|l 3la|n
wlw|w|lals
nlw| x| 2|9

? ? ?
3 S 1
L e 1 @JS_ Center of kernel
B s | 1| | e
4 6 B |2
10 12 9| 2 3
m |18 25 2 9
border padding
These pixel values are replicated
from boundary pixels.
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[’ 7
Center of kernel | & : \8 y, :15 Center of kernel
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Example on the standard average filter with zero padding

1 1 1 1/9 (1/9 | 1/9
1 1/9) 1/9 1/9

1/9) 1/9  1/9 —5%| 4 1 1 | = {19170 170 13 |12 |10 |11 (12 5 8

13 [12 [10 [11 [12 9 v udy 9
/9 1/9  1/9 1 1 1 1/9 | 179 | 179 10 |11 |12 |10 |11

10 11 12 10 11 1/9 1/9 1/9
/9  1/9 1/9 11 |13 |200 |15 |14

11 13 200 |15 14

10 |12 |13 |13 |14
10 |12 (13 |13 |14 s

10 (11 |12 |13 |11
10 |11 |12 (13 |11

13*%1/9 + 12*1/9+ 10*1/9 + 11*1/9 =5 13*¥1/9 +12*¥1/9+ 10*¥1/9+10*1/9+11*%1/9+12*1/9 =8
OR OR
(13*1 + 12*%1+ 10*1 + 11*¥1)/9 =5 (13*1 + 12*%14 10*1 +10*1+ 11*1+4+12*1)/9 =8

You have to apply same process till to the end of the image

13 12 10 11 12
5 8 7 7 5

10 |11 |12 |10 |11 13 (12 |10 [11 Ju s | 8| 7| 7| s
8 32 33 33 8 1/ 1/9 1/9

11 (13 1200 |15 |14 10 |11 (12 J10 f11 8 |32 (33|33 | 8
7 32| 33 | 34 9 1/9 1/9 1/9

10 12 1& 13 14

11 |13 (20015 |14

v g 9 7 (3234 |34 9 /9 19 1/9
10 (11 (12 |13 |11
19 19 1/9 5 s | 8| 8| 6 10 |12 |13 |13 |14

1/9 1/9 1/9
As you can see, we successfully 10 (11 |12 |13 |11

(13*1+14*1+13*1+11*1)/9 =6 remove the noise (200) and the gray
values are very close to each other

G e Q . except the pixels on boundary it have
low gray value because of zero (11*¥1412*14+10*%1+11*%14+15%1+14%1)/9 = 8
O e . . padding and this will produce black

border and we can use replicate border

il g it Bk Boder to eliminate hlack harder




standard average filter

Averaging effects: blurring + reducing nosse
&

with replicate border
Original image

i3 |12 |10 (11 (12

10 |11 |12 (10 (11

11 |13 |200 (15 (14

10 (12 (13 (13 |14

10 |11 |12 |13 |11

¥

12 | 11 | 11 | 11 | 11

5 x 5 averaging

12 | 32 | 33 [}33 | 12

5 x 15 averaging

11 | 32 | 33 | 34 | 13

11 | 32 | 34 | 34 | 13

10 | 11 | 12 | 12 | 12

As you can see, the gray values of
boundary’s pixel are not affected too
much with averaging filter

««umB B ««umB B
+Q. 4
111111111
naaaaaadd .aaaaaaad
.e.amm B c«ummB
sl |8
I I
saaaaadd .a:aaaaad
wnmmn |

sd
I

Rl ]
-d
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3 x 3 averaging

9 x 9 averaging

35 x 35 averaging



Non-Linear Filters

The order-statistical filters are usually non-linear filters, which are hardly
represented by convolution.

» The value of a given pixel in the output image is represented by some statistic within
Its support neighborhood in the original image, such as the median filter.

There are some other filters as well such as the max/min filter.

» The median filter simply replaces the value of the pixel with the
median value within its neighborhood.

» The max/min filter replaces the value of the pixel with the
maximum/minimum value within its neighborhood.

Those filters are normally non-linear and cannot be easily implemented in the
frequency domain.

» However, the common elements of a filter are:
(1) Aneighborhood
(2) An operation on the neighborhood include the pixel itself.



Median Filters

The median filter is a non-linear filter (order filter). These filters are
based on as specific type of image statistics called order statistics.

» Typically, these filters operate on small sub image, “Window”, and
replace the center pixel value (similar to the convolution process).

» Order statistics Is a technique that arranges the entire pixel In
sequential order, given an NxN window (W) the pixel values can be
ordered from smallest to the largest.

1112130 ieeeeeeeeeeeennne. <IN mgs

Where: 11,12, 13......... IN

are the intensity values of the
subset of pixels in the image.




Median Filters

Steps:

o

110 120 0 130
becomes
91 94 o8 200
a0 95 99 100
82 a6 85 a0

1. Sort the pixels in ascending order:
90,90, 91, 94, 95, 98, 99, 110, 120

2. replace the original pixel value by the median :

95
N

the median filter is based on
ordering (ranking) the pixels ,
then replacing the value of a pixel
by the median of the gray levels in
the neighborhood of that pixel.

Median filters are quite popular
because, for certain types of
random noise, they provide
excellent noise reduction +
less blurring than linear
smoothing filters of similar size.

Median filters are particularly
effective in the presence of
impulse noise, also called salt-
and-pepper noise because of its
appearance as white and black
dots superimposed on an image.



Median Filters

Which one has removed the
salt-and-pepper noise??

Wik

The original The smoothed The smoothed image
image with salt image using using median h
and pepper noise  averaging

Salt noise
/ 150 | 151 | 155 [ 150 | 151 1511152 (1511151 (151
150 | 151 455 | 150 | 151 152 | 255 | 153 | 150 | 152 | After applying 152|153 |153 | 152 | 151
A 3x3 Median filter
152 | 255 [ 153 | 150 | 152 Pepper 153|154/ 155! o |153 * |154|155|155|153|153
— noise
153 | 154 | 155 0 1153
157 | 158 | 159 | 157 | 155 157 | 157 | 157 | 155|155
157 | 158 | 159 | 157 | 155 k

O As we note, the salt and pepper noise is removed completely
from this image without burring effect



Median Filters

Example 1:

Using median filters to remove salt and pepper noise, from sub image I(r, c).

5 |16 20 [ 15| 17 | 20

First pixel: 21| 2 | 25| 23|34 19
1. Rearrange the 3x3 neighbor pixels in 43 | 51 | 19 | 18 | 40 | 42
ascending way such as: 15 | 18 | 25 | 23 | 38 | 40
2,5,16, 19, 20, 21, 25, 43, 51 52 | 44| 34| 12| 10| 13

2. By using median filter we select the median
value 20 and put it in buffer image in the 5 |16 ] 20|15 [17 | 20

position (1,1) 21120 | 2 | 2| 2 |19
3122224

15 | ? ? ? ? | 40

Second DiX6|Z 92 | 44 | 34 | 12 | 10 | 13
1. Rearrange the 3x3 neighbor pixels in

ascending way such as: 5 |16 |20 | 15| 17 | 20

2,15, 16, 18, 19, 20, 23, 25, 51 21120 [ 19| 2 | ? |19

2. By using median filter we select the median Bl 2?2?44

value 19 and put it in buffer image in the Bl2]?2]?2]?]4

position (1,1) 52 | 44 | 34 | 12| 10 | 13




Example 2:
Using min. filters to remove salt and pepper noise, from sub image I(r, c).

5 | 16|20 (15| 17| 20
21 | 13 [ 25 | 23 | 34 | 19
43 | 51 | 19 | 22 | 40 | 42
15 | 18 | 25 | 23 | 38 | 40
52 | 44 | 34 | 12 | 10 | 13

First pixel:
1. Rearrange the 3x3 neighbor pixels in
ascending way such as:
5, 13, 16, 19, 20, 21, 25, 25, 43, 51

2. By using min. filter we select the minimum 5 [16]20] 15[ 17 ] 20
value 5 and put it in buffer image in the 115 21212119
position (1,1) Bl2]2]2]2]4

15 | ? ? ? ? | 40

Second pixel' 52 | 44 | 34 | 12 | 10 | 13
1. Rearrange the 3x3 neighbor pixels in
ascending way such as:
13,15,16,19,20,22,23,25,51
2. By using min. filter we select the minimum

value 13 and put it in buffer image in the
position (1,1)

5 |16 |20 | 15 | 17 | 20
21 5 13| 2 | 2 | 19
31202121724
1512 2| 2] 2|40
52 | 44 | 34 | 12 | 10 | 13




Example 3:
Using max. filters to remove salt and pepper noise, from sub image I(r, c).

5 116 |20 (15| 17 | 20
First pixel: 21 | 13| 25 | 23 | 34 | 19
1. Rearrange the 3x3 neighbor pixels in 43 | 51 | 19 | 22 | 40 | 42
ascending way such as: 15 | 18 | 25 | 23 | 38 | 40
5,13,16,19,20, 21,25,25,43,51 52 | 44 | 34 | 12 | 10 | 13
2. By using max. filter we select the maximum
value 51 and put it in buffer image in the D || 49|20 || 48 | A || A
position (1,1) 21 |51 | 2| 2| 2|19
B 22224
1522|2240
Second pixel: 52 | 44 | 34 | 12 | 10 | 13
1. Rearrange the 3x3 neighbor pixels in
ascending way such as: oW AV B [ L] 2
13,15,16,19,20,22,23,25,51 CEE R
2. By using max. filter we select the maximum sl 2?2?27 |4
value 51 and put it in buffer image in the Bl 21?1?1740

position (1,1) 52 | 44| 34| 12| 10| 13




Sharpening Filters

The objective of sharpening is to draw attention to the fine details of an
Image. This is also related to the situation where an image that has been
blurred and now needs to be de-blurred.

In contrast to the process of image :
Smoothing that normally uses pixel averaging techniques,
Sharpening can be conducted using spatial differentiation.

The image differentiation actually:
= Enhances edges
= Discontinuities

= Depresses the areas of slowly changing gray-level values.

The Sharpening filter indicates the filter should have positive coefficients
near its center and negative coefficients in the outer periphery.



Laplacian Filters

These filters will tend to bring out, or enhance details in the image. Example
of convolution masks for the Laplacian-type filters are:

0]-1]0 0|10 A1 -1 1111

1 4|1 1]-4|1 118 |- 1181

0]-1]0 0|10 1101 1111
Rotating by 90 Rotating by 45

The sum of the coefficients in this kernel is zero, this mean that:

« when the kernel is over an area of constant (background area) or
slowly varying gray level, the result of convolution is zero or some very
small number.

« when gray level is varying rapidly within the neighborhood, the result of
the convolution can be large number.

This number can be positive or negative, because the kernel contains both

positive and negative coefficients; we therefore need to choose an output

Image representation that supports negative number.



Laplacian Filters

The derivatives of a digital function are defined in
terms of differences

Definitions of the first and 2nd-order derivatives of a
1-D function f(x) are the differences:

f 50|50(60|90|100(100 100

== f(x+1) - f(x). of [0 [10]30]10[0 [ O
X dx

f O*fT10[20[-20]-10]0
.i_l,ff('f”)ﬂ(l'])'zf(x)- o5
(l,




Laplacian Filters

O The Laplacian, for a function (image) f(x, y) of two variables, is
defined and given below:

Pf o
2
Vi=a2® ay*’
i |
i f(x I L,y) + f(x = 1,y) — 2f(x, y)
i
PP filx, y == 1) E %= 1) = 2 (%)

Vi =[f(x+1,y) + f(x = 1L,y) + flx,y + 1) + f(x,y — 1)
— 4f(x, y). '



2"d Derivative - Laplacian filter

V= [fx+ Ly) +f(x = Ly) + flry+ 1)+ flx.y = 1)

— 4f(x, y). |
Ex: apply the second derivative

20 (20 |20 | 20 on the shaded pixel

20 (10 |10 |10

= V?f=20+20+10+10—4%10

20 (10 (10 |10 sz=20

20 | 10 |10 | 10~

P2f =10+ 10+10+ 10— 4+ 10

v2f =0
v fla)= S
: -
5 E i
a{ = 1P Fle=T0) =270 5) 0 1 0
g >mmp ) =1 -4 1
& f

o = /ey D+ (=D =2/ (xy) 0 1 0

~




Composite Laplacian filter

Composite Laplacian filter :

gx.y) = [(x.y)+ V2f(x,y) if the center coefficient of the
Laplacian mask 1s positive.
Vf(x,y) =4f(x,y) - f(x+1,y) - f(x-1,y) - f(x,y + 1) - f(x,y — 1)
g(xy) = f(x,y) + Vif(xy
gxy)=fxy)+4f(xy)- fx+1,y)-f(x-1Ly)-f(x,y+1) - f(x,y—1)

gxy)=5f(xy)- f(x+1Ly) - f(x=1L,y) - f(x,y+1) - f(x,y - 1)




Composite Laplacian filter

Example: Apply the Laplacianand composite Laplacian filters
on the following blurred edge

f v f g=f+Vf

S0 | 60 | 90 |100 Laplacian -10 [-20 | 20 | 10 40 | 40 110|110
S0 | 60 | 90 [100 ol|-1] o0 -10 (-20 | 20 | 10 40 | 40 |110 110
S0 | 60 | 90 [100 1| 4 | -1 -10 (-20 | 20 | 10 40 | 40 (110|110
50 | 60 | 90 [100 o|-1]| 0 -10 [-20 | 20 | 10 40 | 40 |110 110
Composite
S0 | 60 | 90 [100 Laplacian 40 | 40 |110 (110
SO0 | 60 | 90 |100 o |-1,|0 40 | 40 (110|110
50 | 60 | 90 [100 -1 15 |1 40 | 40 |110 (110
S0 | 60 | 90 [100 o (-1|0O 40 | 40 (110|110




Composite Laplacian filter

Example: Apply the Laplacian and composite Laplacianfilters
on the following blurred edge

2 — 2
0 -1 0 Vf g_f+vf

50 | 60 | 90 |100 -10 40
-1 4| -1

50 | 60 | 90 (100
o] -1 0

50 | 60 | 90 | 100

50 | 60 | 90 (100

V2f =4+50—-50—50—60—50 glx,y)=50-10 b
=200-210
(x,y) = 40
s gxy
2 s 2
Tl . v2f g=f+ V¥
50 | 60 | 90 [ 100 -10 | -20 | 20 40 | 40 |110
-1 sl -1

I

so | 60 907' 100]

50 | 60 | 90 | 100

50 | 60 | 90 | 100

P2f =4+90 — 90 — 90 — 60 — 100 g(x,y) =90 + 20

=360 — 340
(x,y) =110
— g\x,y



Composite Laplacian filter

Vif g=f+"V¥
50 | 60 | 90 (100 -10 | -20 ( 20 | 10 40 | 40 | 110|110
50 | 60 | 90 | 100 -10 (-20 | 20 | 10 40 | 40 |110 110
S0 -10 (-20 | 20 | 10 40 | 40 |110 110
50 -10 (-20 | 20 | 10 40 | 40 | 110|110

P2f =4%100—-100—-100-100-90 [  g(x,y) =100 + 10
=400 — 390

— 10 g(x,y) =110



End of Lecture
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